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a b s t r a c t

In the framework of the CORTEX EU project, several measurements from different KWU and VVER reac-
tors have been analyzed. The goal of this project is to develop and test core monitoring techniques to
detect possible anomalies and better characterize the information provided by the neutron detectors.
In this article, three different signal processing methods are presented: coolant velocity estimation,
Singular Spectrum Analysis (SSA) and Operational Modal Analysis (OMA). The first method is based on
detecting travelling perturbations by cross correlating different detectors and obtaining the impulse
response function. The second method, SSA, reduces the noise and allows a better estimation of the fre-
quency content with a high resolution. SSA has been tested both in simulated and plant data. The last
method permits distinguishing closely spaced resonances and a multivariate analysis of all the detectors.
In this work, the details of each methodology are explained step by step, and the results on each reactor
are also presented. Testing these methods during CORTEX project gives valuable information and orien-
tation for further investigations in reactors diagnostics.
� 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Neutron noise is referred as the fluctuations around the trend
value which are registered by the neutron detectors (Hashemian,
2009). The processing and characterization of this noise is nor-
mally regarded as noise analysis which has been extensively used
for core monitoring and diagnostics purposes in many reactors in
the last decades (Hashemian, 2009, Montalvo et al., 2016, Pázsit
et al., 2017, Pázsit et al., 2019, Runkel, 1987, Torres et al., 2019).

The use of noise analysis and signal processing in nuclear power
plants has been applied to sensor dynamics monitoring (Montalvo
et al., 2014), vibration monitoring (Pázsit et al., 2016), process con-
trol (Hashemian, 2011), etc. There are many examples of these
applications in the literature over the years (Pázsit et al., 2017,
Pázsit et al., 2014).

In 2017, the European project CORTEX (CORe monitoring Tech-
niques: EXperimental validation and demonstration) began with
the objective of developing and testing innovative core monitoring
techniques that allow to detect anomalies in nuclear reactors, such
as excessive vibrations of core internals, flow blockage, coolant
inlet perturbations, etc (Demazière, 2020). Over 60% of the current
fleet of nuclear reactors is composed of units that are more than
30 years old (Demazière, 2020), so early detection of anomalies
is crucial.

From the point of view of signal processing, nuclear power
plants operate normally in steady state conditions, that is, no tran-
sients or sudden changes are observed. So, it is important for mon-
itoring tools to be able to distinguish normal fluctuations from
abnormal fluctuations. This implies to characterize in detail all
the information registered by the detectors and in this special case,
by the neutron detectors.

One of the challenges of signal processing in the last years was
developing tools that could filter and decompose the signals in dif-
ferent frequency bands (Amplitude, Frequency Time methods).
Some examples of these methods applied in nuclear reactors are
Short Time Fourier Transform (STFT) (Montalvo et al., 2017),
Hilbert-Huang Transform (HHT) (Prieto-Guerrero and Espinosa-
Paredes, 2014, Blázquez et al., 2013) and Wavelet transforms
(Tagaris et al., 2019). In all cases, these methods have been used
in situations where there was a transient. Nevertheless, its use in
steady state conditions does not improve the capabilities of stan-
dard Fourier based methods.

The processes that take place in a reactor are a consequence of
different physical phenomena (Bermejo, 2014, Seidl et al., 2015),
such as mechanical vibrations or thermalhydraulic processes,
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which affect the detectors response. Therefore, it is very important
for signal processing techniques and monitoring tools to be able to
differentiate which phenomenon is responsible for the different
characteristics of the signals. These phenomena can overlap in
the same frequency range, so filtering in different frequency bands
is not useful for this.

The monitoring techniques need to distinguish different sources
of perturbation in the same or different frequency ranges as well as
isolate those perturbations which may be transporting along the
core. For that purpose, in this work the authors propose to use
three different methods that have been developed and tested in
real plant data during the CORTEX project.

The first method is Fourier based and it is meant to detect the
transit time of travelling perturbations in the core. The second
method, Singular Spectral Analysis (SSA), is able to extract relevant
frequencies with higher resolution based on a decomposition per-
formed in the time domain. The last method, Operational Modal
Analysis (OMA), distinguishes different phenomena in the signals
and in the same frequency range by decomposing the spectra in
the frequency domain. All the methods have been tested in plant
data from KWU reactors and VVER reactors in different cycles.
The details of each methodology are explained step by step, and
the results on each reactor are also presented. Testing these meth-
ods during CORTEX project gives valuable information and orienta-
tion for further investigations in reactors diagnostics. The results
presented are an overview of the possibilities of these techniques
and their utility for core monitoring.
2. Data analyzed from cortex project and overview of methods
developed

The work presented in this article takes place in the framework
of the EC H2020 European CORTEX project (The European CORTEX
project, 2018). The project aims at developing innovative core
monitoring techniques that allow to detect anomalies in nuclear
reactors during operation using the perturbated neutron flux mea-
surements (so-called Neutron Noise) recorded by the in-core and
ex-core instrumentation. One of the goals of the project is to
improve/develop signal processing methods for a better character-
ization of the neutron detectors data. The applied techniques are
first tested on signals generated by a simulated process mimicking
specific anomalies such as vibrating central cluster of fuel assem-
blies or fluctuations of inlet coolant flow. Then actual data are used
to test the methods developed within the project.

Several partners within the CORTEX consortium have provided
data. In this paper, the data belongs to a three-loop KWU reactor, a
four-loop KWU reactor, a VVER-440 reactor and a VVER-1000
reactor.

In the following subsections, the set of measurements analyzed,
and the core layout of every reactor are described.
2.1. KWU reactors

These reactors have eight ex-core detectors and between 36 and
48 in-core detectors. In the three-loop reactor, the in-core detec-
tors are located in six radial positions (G2, J6, N8, J14, G10 and
C8) and at six axial levels (S1-S6) as can be seen in Fig. 1, that
makes a total of 36 in-core detectors. In the four-loop reactor,
the in-core detectors are located in eight radial positions and at
six axial levels. This makes a total of 48 in-core detectors for this
case as can be seen in Fig. 2.

The total data analyzed for the KWU reactors is shown in
Table 1:
2

2.2. VVER reactors

The VVER-440 reactor layout is presented in Fig. 3 where the
locations of the in-core detectors (SPND, Self Powered Neutron
Detector) are also specified.

In the case of the VVER-440, the data analyzed consists of three
measurements from the same fuel cycle of Unit 2. The details are in
Table 2.

The core layout of the VVER-1000 reactor is presented in Fig. 4
where the radial location of in-core detectors, ex-core detectors
and accelerometers is indicated.

The axial location of the detectors is shown in Fig. 5.
The data analyzed in this reactor covers up to four consecutive

cycles as can be seen in Table 3.
2.3. Methods developed within the project

As previously mentioned in the article, one of the goals of COR-
TEX project is improving the signal processing techniques to better
characterize the neutron detectors data and therefore, differentiate
the different phenomena which takes place in the reactor. This is
especially difficult when the data is stationary and no transients
are observed and, that is what happens in normal operation condi-
tions. The standard noise analysis techniques are very useful for
dealing with stationary data but they are not able to achieve cer-
tain goals proposed in CORTEX such as:

- Monitoring the velocity of travelling perturbations by decom-
posing the signal into local and global components.

- Decomposing the signals in the time domain in different parts
based on their frequency content. These different parts can be
linked to different physical processes.

- Detrending the signals.
- Decomposing the signals in the frequency domain and differen-
tiate dominant phenomena from other processes less relevant
in the reactors within the same frequency range.

- Characterize in detail closely spaced resonances.
- A multivariate analysis that gather all the information from all
the detectors.

The article is organized as follows:

- Section 3 covers all the aspects related to the coolant velocity
estimation method. This method focuses on detecting travel-
ling perturbations by improving the standard cross correlation
technique between distant detectors.

- Section 4 explains the possibilities of SSA methodology which
allows decomposing the signals in the time domain, reducing
the noise in the spectral analysis and consequently, improving
the estimation of the principal characteristic frequencies is
achieved with a higher resolution.

- Section 5 deals with the OMA based methods which are able to
distinguish closely spaced resonances and to decompose the
spectra in different parts that can be linked to different physical
phenomena. Besides, the technique provides a multivariate
analysis that include all the detectors in the reactor.

3. Coolant velocity measurement in VVER-440 reactors

Like other power reactors, there is no instrumentation installed
in VVER-440 reactors for measuring coolant velocities in the reac-
tor core, only their average value is estimated using the total mass
flow rate. However, the fluctuating part of the SPND signals carries
information of propagating perturbations traveling with the cool-
ant, and thus the coolant velocity can be estimated with a correla-



Fig. 1. Generic layout of the location of the in-core detectors in the three-loop KWU reactor.

Fig. 2. Generic layout of the location of the in-core detectors in the four-loop KWU reactor.

Table 1
Sets of measurements analyzed in KWU reactors. BOC, MOC and EOC stand for beginning, middle and end of cycle.

REACTOR Measurement 1 Measurement 2 Measurement 3 Measurement 4

3 LOOP Cycle 39 (MOC39) Cycle 39 (EOC39) Cycle 40 (BOC40) Cycle 40 (MOC40)
4 LOOP M.30 (27 03 2012) M.31 (12 06 2013) M.32 (17 04 2014)
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tion method in the fuel assemblies equipped with neutron detector
chains (Adorján et al., 2000).

3.1. Basic principle of the method

A perturbation moving along two detectors causes small tran-
sients in the detector signals with a time delay proportional to
3

the distance between the detectors (Fig. 6). The time delay – which
can directly be identified in the time series of the signals in an ideal
case – can generally be read from the cross-correlation function
CORR12 sð Þ having a local maximum at the time delay.

CORR12 sð Þ ¼ lim
T!1

1
T

Z T
2

�T
2

di1 tð Þdi2 t � sð Þdt ð1Þ



Fig. 3. Core layout of the VVER-440 reactor and radial and axial location of in-core detectors.

Table 2
Data analyzed from VVER-440.

BOC MOC EOC

Measurement date 2017–01-03 2017–05-26 2017–11-29
EFPD [days] 7.96 149.73 335.13

Fig. 4. Height radial locations of in-core (N. . .), ex-core (X. . .) neutrons detectors
and accelerometers (A. . .).
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4

where di1 tð Þ and di2 t � sð Þ stand for the fluctuating content of the
detector signals and s is the correlation time.

Due to the noisy environment, separation or suppression of the
disturbing signal components is necessary with frequency domain
(Fourier) analysis. The Fourier transform of the detector current is:

dI xð Þ ¼
Z 1

�1
di tð Þe�ixtdt;

and the cross-correlation function between positions z1 and z2
is estimated with the inverse Fourier transform of the cross
spectrum:

CORR12 tð Þ ¼ 1
2p

Z 1

�1
CPSD12 xð Þeixtdx; ð2Þ

where CPSD12 xð Þ ¼ dI1 xð Þ; dI2 xð Þ
�D E

. The transfer function,

H xð Þ ¼ CPSD12 xð Þ
APSD1 xð Þ :

between the two signals is free from the transfer properties of
the measurement chains since both spectra of the above quotient
contain them. Its inverse Fourier transform estimates the impulse
response function,

IMP12 tð Þ ¼ FFT�1 H xð Þð Þ ¼ 1
2p

Z 1

�1

CPSD12 xð Þ
APSD1 xð Þ e

ixtdx: ð3Þ

This function shows a more definite peak at the time delay in
comparison with the correlation function.

A more detailed explanation and some improvement of the
method can be read in (Kiss and Lipcsei, 2022).

3.2. Measurement in the reactor core with SPNDs

The detectors of the reactor core measure not only the propa-
gating perturbation dI Tð Þ xð Þ, but a strongly correlated dI/ xð Þ back-



Fig. 5. Axial locations of in-core (N. . .) and ex-core (X. . .) neutrons detectors in VVER-1000.

Table 3
Data analysed from VVER-1000.

Cycle U1C09 U1C10 U1C11 U1C12

Measurement date 2010–10-18 2011–09-21 2012–09-23 2013–09-23

Fig. 6. Effect of a perturbation on the detector signals in the time domain (left) and the transfer function describing the phenomenon in the frequency domain (right).
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ground noise which can be sensed permanently at any point of the
core and disturbing dW xð Þ noise signals as well. These noise
sources are marked in the left side of Fig. 7 showing the coolant
flow in the pressure vessel of a VVER-440 reactor. H xð Þ is the
transfer function between the positions z1 and z2 consisting of
5

the factor e�ixs12 describing the propagating perturbation (where
s12 ¼ z2 � z1ð Þ=v denotes the transit time between the two detec-

tors), while bH x; zð Þ stands for the transfer function describing
the effect of the reactor core on propagating perturbations depend-
ing on location (Fig. 7). Such effects can e.g., be the increase of the



Fig. 7. Pressure vessel of a VVER-440 reactor with the coolant flow and noise sources (left) and scheme of the propagating of perturbations along two detectors in the core
(right).
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coolant velocity due to heat expansion or the change of the shape
of the neutron flux or the change of the size of the perturbation.
These effects are generally neglected during the velocity estima-

tion i.e. bH x; zð Þ is considered as constant 1 and so the transfer
function is:

H xð Þ ¼ bH x; zð Þe�ixs12 � e�ixs12 :

Based on the right-hand-side scheme of Fig. 7, the fluctuation of
the current induced by a propagating perturbation in the detector
at position z1 and z2 can be written as:

dI1 xð Þ ¼ dI Tð Þ
1 xð Þ þ dI/ xð Þ þ dW1 xð Þ;

dI2 xð Þ ¼ H xð ÞdI Tð Þ
1 xð Þ þ dI/ xð Þ þ dW2 xð Þ: ð4Þ

Let us substitute (4) into (2) and (3). Assuming that the dWi xð Þ,
i ¼ 1;2 terms are independent disturbing noises, then

dIT1 xð Þ; dWi xð Þ
D E

¼ 0, and dI/ xð Þ; dWi xð Þ
D E

¼ 0. Moreover, for

an ideal measurement dW1 xð Þ; dW2 xð Þ
D E

¼ 0 as well. It is not

zero e.g., when there is an undesired crosstalk between the
channels of the measurement system or if some technologi-
cal noises occur. Let us use the following notations:

APSD loð Þ
1 xð Þ ¼ dI Tð Þ

1 xð Þ; dI Tð Þ
1 xð Þ

D E
is the auto spectrum of the local

fluctuation caused by the propagating perturbation at a position

z1; APSD bgð Þ xð Þ ¼ dI/ xð Þ; dI/ xð Þ
D E

is the auto spectrum of the

background (global) noise; APSD Wð Þ
1 xð Þ ¼ dW1 xð Þ; dW1 xð Þ

D E
is

the auto spectrum of the disturbing noise at a position z1;

CPSD glð Þ
1/ xð Þ ¼ dI Tð Þ

1 xð Þ; dI/ xð Þ
D E

is the cross spectrum between the

local and the background fluctuations;

CPSD Wð Þ
12 xð Þ ¼ dW1 xð Þ; dW2 xð Þ

D E
is the cross spectrum between

the disturbing noises of the detectors, ideally it is zero. Although
the propagating perturbations have contribution to the back-
6

ground noise, CPSD glð Þ
1/ xð Þ

��� ��� � APSD bgð Þ xð Þ. Assuming a good quality

measurement system APSD Wð Þ
1 xð Þ � APSD bgð Þ xð Þ and

CPSD Wð Þ
12 xð Þ ffi 0. Finally, with these assumptions and notations

(for more details see (Kiss and Lipcsei, 2019)):

CORR12 tð Þ ¼ 1
2p

Z 1

�1
H xð ÞAPSD loð Þ

1 xð Þ þ APSD bgð Þ xð Þ
� �

eixtdx ð5Þ

The impulse response function can be originated similarly to
the above:

IMP12 tð Þ ¼ 1
2p

R1
�1

APSD loð Þ
1 xð Þeix t�s12ð Þdx

APSD loð Þ
1 xð ÞþAPSD bgð Þ xð Þ þ

1
2p

R1
�1

APSD bgð Þ xð Þe�ixtdx
APSD loð Þ

1 xð ÞþAPSD bgð Þ xð Þ

ð6Þ
This sum has two local extremes. One at the s12 transit time of

the propagating perturbations and the other at 0 s caused by the
global background noise. When the background noise is much

lower than the local term (APSD bgð Þ xð Þ � APSD loð Þ
1 xð Þ), the first

term of the sum dominates and causes a sharp peak at s12. Other-
wise, when the background is much larger than the local term

(APSD bgð Þ xð Þ � APSD loð Þ
1 xð Þ), the second term of the sum causes a

sharp peak at 0 s. Since APSD bgð Þ xð Þ and APSD loð Þ
1 xð Þ both have sim-

ilar frequency dependence (they are characterized by the 1
k2 þx2 like

decreasing shape of the neutron noise spectra above 1.5 Hz), both
peaks can be identified in most of the situations.

Some typical cross correlation and impulse response functions
are presented in Fig. 8 between detectors at the top (level 7) and
the bottom (level 1) of the reactor core.

Fig. 8 demonstrates that the impulse response function sepa-
rates the peak of the global background noise at 0 s from the peak
at the transit time of the propagating perturbation much better
than the correlation function. Such functions often contain much
more disturbances than the functions provided in the figure: here
we have selected the ones that best show the effect. For these



Fig. 8. Cross correlation (left) and impulse response functions (right) with different background noises.

Fig. 9. Radial distributions of the coolant velocities.

Fig. 10. Average coolant velocities in the trend of regular velocity measurements.
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graphs, the two farthest detectors of the chains are used, because
they provide the smallest relative error. Additionally, the upper-
most detector has the shortest cable and so the smallest disturbing
effect of the cable signal, while the global background noise can be
partly compensated by the cable signal of the bottommost detector
(due to the opposite sign of the signals of the cable and the
detector).

3.3. Measurements and signal processing

Three measurements of the same fuel cycle (#32) of Unit 2 of
Paks NPP were used to demonstrate the method, at the beginning
(at 8 EFPD – effective full power days), at the middle (150 EFPD)
and at the end (335 EFPD) of the fuel cycle. Each measurement
was 1-hour-long. Stationary (DC) and fluctuating parts (AC) of
the signals were produced through filters (DC: 0.4 Hz low pass;
AC: 0.03 Hz high pass, 40 Hz low pass, 50 Hz notch) and measured
separately with sampling frequencies of 100 Hz (AC) and 3.125 Hz
(DC).

The signals were normalized with their DC values similarly to
the normalization used in Western type reactors. However, the
detectors are uncompensated, i.e. the detector cable distorts the
DC value since the cable axially integrates the neutron flux above
the detector what results an error up to 3% depending on the sen-
sitivity of the cable and this error is neglected. When the fluctuat-
ing part of the signals is evaluated, it needs to be considered that
only 6% of the Rh SPND signals is prompt in steady state.

Fourier transform of the signals were made with 4096 width
Hanning windows and 50% overlapping resulting the frequency
7

resolution of 0.0244 Hz. However, the accuracy of the transit time
is determined by the resolution of the impulse response function
which is equal to the sampling time of the measurement.
3.4. Results

In principle, any two detectors of the chain can be used to eval-
uate the transit time (and the coolant velocity) but detectors far-
ther apart provide the highest accuracy (due to the given
resolution). However, the distance between detectors cannot be
too large, since the correlation between the detector signals
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decreases with the distance which results in a deterioration in the
readability of transit time. The optimal distance is determined
empirically for the given measurement arrangement.

For VVER-440 reactors, detector pairs 1–5 and 2–6 provide the
best results, graphs in this section have been calculated with them.
In practice, pairs 1–4, 1–5, 1–6, 2–5, 2–6, 3–6 are still usable, the
result can be further improved with the weighted average of the
transit time determined using these detector pairs (Adorján et al.,
2000).

Radial distributions of the fuel assembly average coolant veloc-
ities are shown in Fig. 9 for the three measurements. The smooth
graphs refer to a still operation over the fuel cycle.

These kinds of evaluations are performed in a regular base in
the reactor units of the Paks NPP. Core average values of the pre-
sent evaluations are displayed with bigger markers in the trend
of the regular measurements in Fig. 10 as a validation of the three
measurements provided for the Cortex project. The new values
well fit in the trend which have a change of less than 0.5% during
the fuel cycle.
4. Singular spectral analysis applied to the VVER-1000
measurements

In the context of the processing of Acoustic Emission Signals
acquired in the framework of the experimental campaigns at the
CABRI facility (French nuclear research reactor) (Pantera and
Traore, 2015) we use classical methodologies (Traore et al.,
2017b, Traore et al., 2016) to pre-process the data. Such methods
have proven to be very robust on our noisy data. We consider them
as reference methods against which alternate methods can be
tested, in particular to see if it would be possible to extract more
information from our data. The Singular Spectrum Analysis (SSA)
is one of those alternate methods, which has received increasing
attention since the early nineties. Unlike most methods for time
series analysis, SSA needs no statistical assumption on signal or
noise. By using a decomposition of the signal into the sum of a
small number of independent and interpretable components, SSA
allows to perform various tasks such as extraction of specific com-
ponents from a complex signal (noise, trend, seasonality . . .), detec-
tion of structural changes and missing values imputation. We have
explored the ability of the SSA to analyze and denoise the Acoustic
Emission (AE) signals (Traore et al., 2017a). We try here to use this
approach on neutron noise data. Firstly, we will apply the method
to simulated data in order to understand how it works. Then we
will apply it to actual power plant data in order to highlight how
this method could be applied to improve the classical approaches.
In this study, we merely adopt an exploratory approach for every
sensors. We will show how the SSA method can reduce the noise
in the spectral analysis allowing us to estimate the principal char-
acteristic frequencies with a higher resolution. From a technical
point of view, when we use the SSA terminology we imply Basic
SSA. In the cases where it can be assumed that the signal is station-
ary, it would be possible to enhance the results with the use of a
Toeplitz SSA (cf. (Golyandina et al., 2001) for more details). We
do not perform a physical analysis of the results from all the sen-
sors in order, for instance, to correlate events in the core and the
calculated frequencies. Such a study will be the subject of another
survey.
4.1. Principle of the SSA method

Consider a real-valued non-zero time series x1; � � � ; xnð Þ of length
N. The main purpose of SSA is to decompose this time series into a
sum of a small number of independent time series representing
components of interest and residual. The SSA technique consists
8

of two complementary stages: decomposition and reconstruction.
In this section, we briefly summarize the different steps, for further
details on theoretical aspects we report the reader to references
(Golyandina et al., 2001,Hassani, 2007).
4.1.1. Decomposition stage
The decomposition stage is divided into embedding and singu-

lar value decomposition.
4.2. Embedding

Embedding is a classical procedure in time series analysis
(Broomhead et al., 2020, Kantz and Schreiber, 2004). It can be con-
sidered as a mapping which transfers the one-dimensional signal
into the multidimensional signals X1; � � � ;Xk where
Xi ¼ xi; � � � ; xiþL�1ð ÞT 2 RL and K ¼ N � Lþ 1. The vectors, called L-
lagged vectors, are grouped into the trajectory matrix.

X ¼ X1; � � � ;Xk½ � ¼

x1 x2 � � � xk
x2 x3 � � � xkþ1

..

. ..
. ..

. ..
.

xL xLþ1 � � � xN

0
BBBB@

1
CCCCA

This matrix being a Hankel matrix, all the elements along the
diagonal iþ j ¼ const are thus equal. The single parameter of the
embedding step is the window length L which is an integer such
that 2 	 L 	 N. The SSA technique explores the empirical distribu-
tion of the pairwise distances between the lagged vectors Xi and Xj.
So the choice of the dimension L of the lagged vectors is of major
importance in SSA implementation, since it determines the quality
of the decomposition.
4.3. Singular value decomposition (SVD)

Based on the so-called SVD theorem, the second step of the
decomposition stage consists in applying a SVD of the trajectory
matrix. Denote by k1; � � � ; kN the eigenvalues of the matrix XXT fol-
lowing the decreasing order of magnitude k1 
 k2 
 � � � 
 kL 
 0ð Þ,
and by U1; � � � ;UL the orthonormal system of the associated eigen-

vectors. Let ¼ max i such that ki 
 0f g. If we consider Vi ¼ XTUiffiffiffi
ki

p the

SVD of the trajectory matrix X can be then represented as a sum
of rank-one bi-orthogonal elementary matrices Xi ¼

ffiffiffiffi
ki

p
UiV

T
i :.

X ¼ X1 þ � � � þ Xd

The collection ki;Ui;Við Þ is called the eigentriple of the SVD.
4.3.1. Reconstruction stage
The reconstruction stage is composed of two parts: grouping

and selection of the groups for the reconstruction.
4.4. Grouping

The grouping procedure consists in partitioning the set of
indices 1 � � � df g into several groups, and in summing the matrices
within each group. Considering the group I ¼ i1; � � � ; ip

� �
and the

associated matrix X defined as XI ¼ Xi1 ; � � � ;Xip the split of the set
of indices I1; � � � ; Imf g leads to the decomposition:.
X ¼ XI1 þ � � � þ XIm

The procedure for choosing the set I1; � � � ; Imf g is called the
eigentriple grouping. This procedure is not very formal. Each group
is entended to represent an additive component of the time series
(trend, oscillatory component, noise). We will elaborate our
method in section 4.3.3.
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4.5. Groups selection for the reconstruction

In the grouping summation, we can remove some groups
related to the components we are not interested in according to
the analysis objectives.

4.6. Application of SSA in simulated data

We use simulated data provided in (Dokhane and Mylonakis,
2018). In order to generate the desired data, models for in-core
and ex-core detectors have been developed using the Simulate
3 K code (S3K) for the four-loop Westinghouse PWR mixed
core of the OECD/NEA transient benchmark (Chionis et al.,
2018). We chose in the scenario 5 the data relative to the
5x5 central Fuel Assembly (FA) cluster undergoes a sine wave
vibration of 1 mm and frequency of 1.5 Hz in horizontal direc-
tion. In this section, we worked only on one signal. It was
meant for testing SSA on a signal whose frequency content is
known.

The simulation has a duration of 100 s and a time step of 0.01 s.
Hence the sampling frequency is equal to 100 Hz. Fig. 11 shows the
time evolution of the simulated data and Fig. 12 its frequency
content.

We will apply now the SSA method on this data. We gather in
Fig. 13 the results of the analysis.

4.6.1. SSA analysis: Decomposition stage
The upper left graph in Fig. 13 confirms that the signal is con-

tained principally in the first eigentriple since the two correspond-
ing eigenvalues are larger than the residual components
eigenvalues. There is also a part in the 3–6 eigentriples which
seems not to be in the residual part.

The lower left graph in Fig. 13 shows that the pairs 1–2, 3–4, 5–
6 are produced by sin waves and the pairs 7–8, 9–10, 11–12 by a
modulated sine waves. We can see on the upper right graph the
amplitude decreasing of the sin waves.

The interpretation is based on the fact that a sine wave pro-
duces two eigentriples, which are sine waves with the same fre-
Fig. 11. Time evolution for the simulated data.
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quency and have a phase shift exactly or approximately equal to
p=2, due to the orthogonality of eigenvectors which can be seen
on the upper right graph in Fig. 13.

The lower right graph shows the correlationmatrix between the
eigenvectors. The matrix of absolute values of w-correlations is
depicted in grayscale (white color corresponds to zero and black
color corresponds to the absolute values equal to 1). We can see
that there is no trend component (because there is no single eigen-
value) and three pairs are clearly separated between themselves,
since the w-correlations between the pairs are small, while w-
correlations between the components from the same pair are very
large. The block of 10–30 components is ‘‘gray,” therefore we can
expect that these components are mixed and are largely produced
by noise.

Since we remark in this analysis that there is no trend compo-
nent, the signal can be considered as a stationary signal made up
of three sine waves.

4.6.2. SSA analysis: Reconstruction stage
The reconstruction step deals with the selection of some groups

of components which would be able to describe the original signal
deleting the noise part. According to the last section, we decide to
reconstruct the signal only with the three sine waves. On a real
case, the difficulty is to select the factors for the reconstruction.
The choice depends on the objectives, it is not very formal. We will
show a method that can help on a real case because the number of
factors to explore can became very important when the spectral
content of the signal is rich. We will group the factors according
to their similarities. Thus, we do a classification on the factors
using the correlation to define the proximity between each others.
The dendrogram in Fig. 14, result of the hierarchical classification,
allows us to make an idea of the existence of several groups of
components judging in the same time of their proximity. We indi-
cated by colors how we decided to cut the classification tree in
order to extract eight groups. The different sine wave are well
highlighted.

We can now do the calculation of the spectrum of every group
(see Fig. 15) in order to describe the spectral contents of the signal.
In this case, Fig. 15 shows that some classes could be characterized
by a specific frequency content, giving the possibility to isolate in
some subspace different frequency content in order to keep or
eliminate according to the different aspect of the physical scenario
we want to highlight.
Fig. 12. Frequency content of the simulated data.



Fig. 13. Basic SSA results for the simulated data.

Fig. 14. Classification tree on the SSA factors.
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4.7. Application of SSA in actual plant data

In this section, we apply the method on actual plant data
acquired by the in-core detectors of the Temelín VVER-1000 reac-
tor in the Czech Republic. The real data used for this article were
acquired in the framework of the study of the control rod insertion
reliability. For that purpose, we had followed the migration of one
assembly in the core through four consecutive fuel cycles, so-called
U1C09, U1C10, U1C11 and U1C12 (Stulík et al., 2019a, Stulík, et al.,
2019b). At the end of the last cycle, a problem related to an Incom-
plete Rod Insertion (IRI) occurred. We applied the method for all
the cycles but we will show only data acquired at the beginning
of the first cycle U1C09. In the framework of this article we will
not discuss the IRI problem. We analyzed two types of sensors:

- Rhodium Self Power Neutron Detectors (SPND), in-core
locations.

- Ionisation chambers, ex-core locations.

Fig. 4 and Fig. 5 in section 2 help us to locate the sensors accord-
ing to their namings which indicate the radial and axial position.
The sampling frequency is 1000 Hz and the duration is around
15 min.
10
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4.7.1. Data Pre-processing
From the time evolution measurement of a neutron detector,

we can show in Fig. 16 an example the Power Spectral Density
on several frequency ranges:

� global: all the frequencies, from 0 to 500 Hz
� part-1: the very low frequencies
� part-2: the range between 0 and 50 Hz
� zoom-part-2: a zoom on the part-2

The global part shows us the presence of the 50 Hz frequency
with its multiples that is to say 100, 150, 200, 250, 300, 350, 400
and 450 with a high energy. In part-1, the low frequencies, the
power spectrum shows a 1/f spectral distribution under around
2 Hz. The duration of the cycle, around a quarter of an hour, with
a sampling frequency equal to 1 kHz give us good condition to
detect very low frequencies with the fast Fourier transform. Above
50 Hz, there is only one frequency, at 120 Hz, which is not multiple
of 50 Hz.

Doing a Singular Spectrum Analysis on such an input signal will
highlight on the first factors of these features. Indeed, the eigen-
value profile is related to the power spectrum ordered from the
biggest value to the smallest one. But, finally, these features are
not interesting in the study of the frequency structure in our case:
Fig. 15. Simulated data: spectrum analys
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the multiple of 50 Hz are pointless and we do not study the
delayed neutrons. Thus, we will realise the SSA on a filtered signal.
We apply a high pass filter with a cut frequency equal to 2 Hz and
several stop band to remove the 50 Hz and the harmonics (cf.
Fig. 17). In fact, we see that, except for the frequency at 120 Hz,
the range of interest is between 2 Hz and 50 Hz. Hence, it is possi-
ble to decimate the signal by a factor of 10 without losing informa-
tion (except for the frequency at 120 Hz we will not try to explain
here).

4.7.2. A second pre-processing: Detrend the signals when it is
necessary

In Fig. 18, we notice a trend in the in-core rhodium SPND before
achieving a steady state. On the contrary, there is no trend in the
ex-core sensors, that is to say the ionization chambers which are
more reactive to the neutron flux detection.

In order to analyse the neutron noise, it is necessary firstly to
detrend the signal acquired online. For example, in Fig. 19 we
can see the presence of a trend in the sensor N315 measurement.
For that purpose we can use the SSA decomposition.

Fig. 20 gives the evolution of the eigenvalues. The ideal group-
ing of eigenvectors is in pairs, where each pair has a similar
eigenvalue, but differing phase which usually corresponds to
sin-cosine-like pairs. Hence, from the shape of the leading singular
is on the factors after reconstitution.



Fig. 16. PSD overview on an in-core detector raw signal.

Fig. 17. The SSA is applied on the filtered signal.
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values, we affect the first four factors, that is to say not paired val-
ues, at the trend.

In Fig. 21 we see the reconstruction using the first four factors
for the trend (S1). We can visualize the result in Fig. 22 and at last,
by difference between the raw data and the trend, the neutron
noise estimation in Fig. 23. It is only at this stage that we can
use the signal to do further analysis. We can for example transform
this time evolution in an image to feed a convolutional neural net-
work for classifying anomalies (Tagaris et al., 2019).

4.7.3. SSA analysis on the detrended signal
At this stage, we have detrended our signal and reduce the

range of the spectral range to improve our analysis. We will do
again the SSA approach to describe the spectral content. As
expected, the leading eigenvalues (cf. Fig. 24) shows now only
eigenvectors organized in pairs, there is no more trend, only oscil-
lations. We decomposed the signal in 300 components but only 60
have been represented. Fig. 25 shows the correlation matrix which
propose to keep about twenty eigen factors to reflect the maxi-
mum frequency response. In order to describe the spectral content,
we first realize a classification of the components in 10 classes (we
highlight only the class 3 and 10 in Fig. 26. This classification is
similar to the so-called correlation clustering of variables used in
multivariate statistics. We use the Ward criterion for the agglom-
erative algorithm. Then, the power spectrum of every class was
12



Fig. 18. Cycle U1-C09 overview in time domain of the ex-core detectors (first line) and the in-core detectors (the other lines).

C. Montalvo, L. Pantera, S. Lipcsei et al. Annals of Nuclear Energy 175 (2022) 109193

13



C. Montalvo, L. Pantera, S. Lipcsei et al. Annals of Nuclear Energy 175 (2022) 109193
estimated employing Welch’s method and we compared the spec-
tra by superposition in Fig. 27 with the same colours used in
Fig. 26. The SSA improve the resolution of the spectrum. The SSA
is able to extract two principal low frequencies (cf. Fig. 27) which
could even be three frequencies according to the Fig. 29. We did a
zoom of the spread frequencies of the welch periodogram around
the frequency of 27 Hz (cf. Fig. 16 zoom-part-2) in Fig. 28 which
gives some details on the separability of the classes. We only rep-
resented the classes 1,4,7,10 to facilitate the observation. The posi-
tion of the classes can be observed in Fig. 26 with the same color
code.
Fig. 19. Trend of the N315 in-core sensor.

Fig. 20. SSA Eigen-values.
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4.8. Discussion about the high number of frequencies highlighted by
the SSA calculation

We use in this section a technic used in speech recognition.
Thanks to the modelisation by an autoregressive model we assess
resonance frequencies so-called formants (Snell and Milinazzo,
1993).

We can have an idea of the continuity in the presence of these
formants during the cycle thanks to Fig. 30 which is the tracking of
these formants detection by a sliding windows (512 points) on all
the cycles. All the formants assessed by the autoregressive model
Fig. 21. Assessment of the trend by the SSA analysis.

Fig. 22. SSA detrending.



Fig. 23. SSA Neutron Noise assessment.

Fig. 24. Eigen values after detrending and filtering.

Fig. 25. Correlation matrix after detrending and filtering.

Fig. 26. Factors classification after detrending and filtering. We highlight only the
class 1 (red) and 10 (green) for the understanding of the graph.
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on the final spectrum are not always detected online. There is a
strong variability. The medians of the online detected formants
are reported in black dots lines on the welch PSD graph on the right
side. Which is conspicious is the fact that only two formants are
stable, the frequencies 24.34 and 33.21 Hz. Because of the shift
between the median and the final formants (black and red dotted
lines) we can deduce that all the phenomena linked to the other
frequencies evolve during the cycle. On the contrary, these two
stable frequencies must be linked to a physical phenomenon
whose signature does not evolve during the cycle. On one hand,
this observation can explain the frequential spreading observed
15
in Fig. 16 (cf. part-2 and zoom-part-2) and on the other hand, cer-
tainly the significant amount of frequency identified by the SSA
analysis.

We did not realized a quantitative analysis of the SSA concern-
ing the spectral investigation. We only noticed on the results (cf.
Figs. 27-28-29) that the spectral calculation carried out on the
eigenvectors significantly improve the signal to noise ratio high-
lighting some specific frequencies comparing to the classic Welch
calculation realized on the raw signal (cf. Fig. 30). We could even



Fig. 27. Spectral decomposition after detrending and filtering.

Fig. 28. Spectral decomposition after detrending and filtering - zoom on the middle
frequencies.

Fig. 29. Spectral decomposition after detrending and filtering - zoom on the low
frequencies with the separation of two very close frequencies under 10 Hz.

Fig. 30. Formants tracking.
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separate two very close frequencies under 10 Hz (cf. Fig. 29). We
did not use anymore these observations. We have to do further
investigation in the relationship between Singular Spectrum Anal-
ysis and Fourier analysis (Bozzo et al., 2010) in order to be able to
assess a better understanding of the highlighted frequencies by the
SSA and get a robust physical interpretation pertained to the neu-
tron noise phenomenon.

Eventually, in our case, the SSA was used mainly to remove the
trend for each in-core signal which was an obligation before any
further analysis. We removed the components linked to the trend
16
during the reconstruction phase. We did not need a model and it
works very well (cf. Figs. 22 and 23). The advantage of using SSA
compared to a traditional Fourier analysis for this process is not
to generate artifact (Rekapalli and Tiwari, 2016) in the output sig-
nal as with the classic filtering methods (as a delay introduction for
example).

5. Operational modal analysis applied to neutron noise

The expression Operational Modal Analysis means the class of
modal identification methods based on response measurements



Fig. 31. Assumptions taken in Operational Modal Analysis techniques. Taken from
(Rainieri and Fabbrocino, 2014).
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only. It is widely used to characterize spectrum from accelerome-
ters and displacement sensors for vibration monitoring in multiple
applications such as aerospace, civil and industrial engineering
(Eugeni et al., 2018,Gres et al., 2019,Rainieri and Fabbrocino, 2014).

One of the criteria for its application is the stationarity of the
data analyzed and the assumption of certain hypothesis regarding
the input. Thus, in the general case, the structure/system under
study is assumed to be excited by unknown forces that are the out-
put of the so-called excitation system loaded by white noise (see
Fig. 31). Under this assumption, the measured response can be
interpreted as the output of the combined system, made by the
excitation system and the structure/system under test in series,
to a stationary, zero mean, Gaussian white noise (Rainieri and
Fabbrocino, 2014,Torres Delgado et al., 2021).

It has several advantages like its capability to deal with closely
spaced resonances, to distinguish different sources of vibration
that affect the spectrum in the same frequency range and to gather
all the information from all the detectors available at different
locations. In this respect, the method allows a multivariate
approach and discriminating different spectral characteristics in
the same frequency range by decomposing the spectra in different
parts. Note that this type of discrimination in the same frequency
range cannot be achieved by filtering with wavelets or Hilbert
Huang Transform since these techniques decompose the signal
into different frequency bands but they do not decompose the sig-
nal into different parts within the same frequency range.

Neutron noise is the result of different physical phenomena
(Torres et al., 2019). For diagnostics purposes it is very important
to distinguish which source is producing every spectral character-
istic within the same frequency range. Standard noise analysis can-
not distinguish this and in many occasions, a detailed
characterization of the different sources affecting the neutron
noise could answer many questions especially when certain
changes have taken place in the plants. For instance, changes in
fuel design that normally leads to changes in structural design,
thermohydraulic parameters or others (Bermejo et al., 2017).

In general terms, modal analysis techniques provide the follow-
ing info:

� Decomposed spectra that can give information of the different
sources affecting the neutron noise.

� Characterization of the different resonances found in the
decomposed spectra: amplitude, frequency and damping of
every resonance.

� Spatial information of all the detectors and how every reso-
nance is manifesting itself in each detector with both amplitude
and phase.

� Distinguishing the different ranges of frequency depending on
the spectral characteristics based on an objective criterion.

In the following subsections, some global results from the appli-
cation of OMA are presented. First, an explanation of the steps to be
followed to apply the methodology is described in subsection 5.1.
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In subsection 5.2, general results of the application of the method-
ology are presented as well as some focus on certain specific fre-
quency ranges (subsection 5.2.15.2.1 and 5.2.2). At last, future
lines of research are outlined.

5.1. Application of modal analysis: Enhanced frequency domain
decomposition

Several methods are included under the term operational modal
analysis. One of the most used is called Enhanced Frequency
Domain Decomposition (EFDD). In this section, all the steps needed
to apply this methodology are explained in detail:

1. Selecting the detectors to use in the analysis. In Operational
Modal analysis, the detectors used are located on the structure
under study so that they can monitor as best as possible all the
vibrations. In the case of neutron noise, the in-core neutron detec-
tors are the ones that comply with this criterion.

2. Construction of the PSD matrix (Gyy xð Þ) for each frequency
step. The diagonal is composed of the APSD of each detector and
the non-diagonals by the CPSDs. Its size is n � n where n is the
number of detectors.

3. Singular value decomposition of the APSD matrix,

Gyy ¼ URUH ð7Þ
where R is a diagonal matrix with the singular values in descending
order. The U matrix contains the singular vectors which are the
mode shapes /kf g at each frequency. The relationship between
mode shapes and singular vectors can be found in (Rainieri and
Fabbrocino, 2014). This decomposition leads to two different
sources of information:

4. Singular values, which are used to construct the decomposed
spectra. There will be as many decomposed spectra as number of
detectors. Normally the first three singular values are the most
important and the rest are negligible. Therefore, the dominant
sources in neutron noise can be found in the first or second singu-
lar values.

5. Singular vectors, which give information on the phase of
every single detector at every frequency step and in the different
decomposed spectra.

Thus, for a certain frequency step, there are n singular values
and for every singular value, there is a singular vector whose coor-
dinates give information on how the spectrum is manifesting itself
in each detector. Let us say that the singular value is the amplitude,
and the singular vector gives the phase in each detector at that par-
ticular frequency.

6. Modal assurance criterion (MAC) (Pastor et al., 2012). It is the
criterion used to determine the frequency range of the resonance
under study.

MAC ¼
/ref

� �H
/kf g

��� ���2
/ref

� �H
/ref

� �� �
/kf gH /kf g

� � ð8Þ

where /ref

� �
is the singular vector (mode shape) at the peak of the

resonance and /kf g is a singular vector around the vicinity of a res-
onance. Normally, as a general rule (Rainieri and Fabbrocino, 2014,
Pastor et al., 2012), the threshold value of 0.8 is used to consider the
similarity between two mode shapes.

7. Obtaining the parameters of the resonances under study:
amplitude, frequency and damping. Firstly, the inverse Fourier
transform of the singular value spectra gives the autocorrelation
function which lead to the frequency and the damping ratio of
the resonance. For more details, see (Montalvo et al., 2021).

8. Characterize certain frequency ranges. For neutron noise
diagnostics, obtaining the resonances of every decomposed spec-
trum may not be useful. Sometimes, a preliminary approach based
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on studying the singular values and the singular vectors phases can
give a lot of information to the plants on the type of phenomena
affecting neutron noise.
5.2. Examples of application in real plant data

In this section, some examples of the application of EFDD in real
plant data will be described. The data used for this analysis belong
to two KWU reactors: a three loop and a four loop. In the first case,
the in-core detectors are located in six radial positions and in six
axial levels, making a total of 36 detectors. In the second case, there
are 48 in-core detectors located in eight radial positions and six
axial levels. The figures presented in this section belong to the sec-
ond case, as it has more detectors and it is more suitable to exem-
plify the application of the methodology. The results of both
reactors have not been included since it would be redundant. At
the end of this section, comments on the results observed on the
three-loop reactor will be also included.

In Fig. 32, there is an example of the decomposed spectra after
applying the singular value decomposition in the four loop reactor.
The decomposition has been performed by using all the in-core
detectors. The graph shows the first five singular values (SVDi).
As can be seen the first three singular values are the most impor-
tant, whereas the fourth and fifth in purple and green colors
respectively, present very low values. Note that the decomposed
spectra gather all the information from all detectors included in
the analysis. Therefore, the spectra from the first singular values
contains the dominant sources that affect the neutron noise at
every frequency.

Apart from the singular values, the singular vectors give infor-
mation on the phase relationship between all the detectors at
Fig. 32. Singular values spectra for the in-
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every frequency range. In the next subsection, an example of the
representation of the singular vector phases will be shown.

When there is a need to focus on a particular frequency band, it
is important to use the MAC to determine the frequency range of
interest. For instance, if the interest is characterizing the peak
around 1 Hz, the MAC should be calculated for every decomposed
spectra following equation (2). As can be seen in Fig. 33 on the left,
the MAC is calculated for SVD1-SVD3. The region of interest is
determined for MAC values above 0.8. In the right subfigure, the
frequency range obtained for every SVD is established. The Peak
around 1 Hz is present in SVD1 and its frequency range goes from
0.8 to 1.6 Hz according to MAC. Following the steps of EFDD, ampli-
tude, frequency and damping of that resonance could be calcu-
lated. In SVD2, the peak around 1 Hz is not present but there is
another one at around 0.6 Hz. As can be seen, these two closely
spaced resonances can be separated with this methodology and
properly monitored in time for diagnostics purposes.
5.2.1. Beam mode range
In order to see the possibilities of the EFDD, we will explore

some of the results obtained with this methodology. In Westing-
house reactors, in the beam mode region (7–8 Hz), opposite neu-
tron detectors present out of phase (Pázsit et al., 2016).
Nevertheless, in KWU reactors, in this region there is an in phase
relationship between all detectors. Some authors have indicated
that this is due to a pressure wave or fluid resonance (Runkel,
1987,Viebach et al., 2018). In fact, when EFDD is applied to the 4
loop reactor, all detectors present the same phase as can be seen
in the phase of the first singular vector in Fig. 34. For the second
singular vector, out of phase is observed. It is very likely that in this
frequency region, the neutron noise is affected by different sources.
core detectors in the four-loop KWU.



Fig. 33. SVD spectra and MAC values for the 4 loop in-core neutron detectors data in the frequency range below 2 Hz in the left subfigure. In the right subfigure, same info
plus the MAC 0.8 threshold value is added as a red line.
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The first singular value and vector may be due to the pressure
wave and the second singular value/vector may be the conse-
quence of a pendular motion.

In order to see this in 3D, Fig. 35 shows the phase of the first sin-
gular vector at every detector location in the vicinity of 7.5 Hz. As
can be observed, all detectors present approximately the same
phase, between 150 and 180 degrees.
Fig. 34. Phases of the singular vectors in every in-core
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The phase of the second singular vector can be seen in Fig. 36.
Note that certain detectors present out of phase between each
other. On one hand, there are strings like J02, J06, O05, G10, N12
and G14 that present 180� phase, whereas certain detectors from
strings C04 and B12 present zero phase, that is they are out of
phase with respect to the rest of the detectors (J02, J06, O05,
G10, N12 and G14). It is possible that the pendular motion is
neutron detector for the four-loop KWU reactor.



Fig. 35. Phases of the first singular vector at 7.5 Hz in the four loop KWU reactor.

Fig. 36. Phases of the second singular vector at 7.5 Hz in the four loop KWU reactor.

Fig. 37. Phases of the first singular vector at 0.5 Hz in the four loop KWU reactor.
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Fig. 38. Phases of the first singular vector at 1 Hz in the four loop KWU reactor.
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manifesting in this second singular value/vector since the out of
phase is observed among the detectors.

5.2.2. Low frequency range (1 Hz)
In the low frequency range, apart from the in phase behavior

between detectors in the same string, which is something that
has been previously observed by noise analysis (Seidl et al.,
2015), it is possible to see an out of phase behaviour between
detectors located in opposite halves of the reactor at 0.5 Hz
(Fig. 37) and at 1 Hz (Fig. 38). This has also been observed in other
reactors as can be seen in (Hashemian, 2009), where spectral char-
acteristics like this were linked to a flow shifting phenomenon.

It is important to mention that in both reactors, three-loop and
four loop, the singular value decomposition was very similar
between each other. The singular value spectra for the three loop
reactor has a profile very similar to the one presented in Fig. 33,
where two resonances are observed: the one in the thermohy-
draulic range and the one in the beam mode range. Regarding
the distribution of phases of the first singular vectors, the behavior
is almost the same in both reactors. Therefore, presenting figures
for the three loop reactor would be redundant. The results of the
four loop reactor, as it has more detectors, (48 instead of 36) allow
to illustrate better the capabilities of the methodology to deal with
a high number of time series simultaneously. This is one of the
main advantages of OMA. Naturally, the resonances of each reactor
have particular values for amplitude, damping and frequency. The
detailed study of these parameters for each reactor and its compar-
ison constitute a possible future line of research.

As can be seen, the possibilities of OMA are numerous: from
obtaining closely spaced resonances to identifying different
sources of neutron noise, as well as 2D and 3D visualization of
the results. In order to take advantage as much as possible of its
possibilities, it should be supported by simulation efforts and feed-
back from the plants.

Future lines involving use of OMA techniques in KWU should
focus on characterizing resonances in different frequency ranges,
monitoring of these results, full characterization of the low fre-
quency range, use of the decomposed spectra for the optimization
of monitoring capabilities, etc.

6. Conclusions

In this work, several signal processing methods have been
applied to plant data within the framework of the EU project COR-
21
TEX. The data analyzed come from four different reactors: two
KWU reactors and two VVER reactors.

Coolant velocities were estimated by evaluating three VVER-
440 measurements and the results were verified with inserting
them into the trend of standard evaluations. Narrower transit time
peaks of the impulse response functions were demonstrated with
comparing them with cross correlation functions at different levels
of background noise.

The article showed how the Singular Spectral Analysis can be
used to deeply analyze the neutron noise signal in the time domain
following the following phases:

� phase 1: signal decomposition in order to identify and analyze
its different components

� phase 2: obtain the spectrum of the different components
� phase 3: classification of these components according to their
frequency content

� phase 4: signal reconstruction as the sum of those components
of interest. We can then remove the components we are not
interested in: trend, certain harmonics, noise.

After revealing the different spectral components of the signal,
we are able to assess the value of the frequencies with a better res-
olution than that appearing in the welch periodograms. Now, we
have to analyze these results according to physical investigation
in order to explain the highlighted frequencies. In order to adjust
the degree of precision, we can launch again the analysis asking
for further investigation. The analysis has been carried out in such
a way to generate a reproducible document automating the data
processing thanks to the literate programming approach in the
framework of the R language (Xie, 2021). Thus, we will be able to
investigate different periodograms smooths, SSA decomposition
(number of eigen vectors) and reconstruction (results of factor
classifications).

Enhanced Frequency Domain Decomposition is a method inside
the Operational Modal Analysis methodology that is able to ana-
lyze all the detectors in the core simultaneously. It decomposes
the signal from all the detectors in the frequency domain in the
so called Singular Value Decomposed spectra which represent dif-
ferent sources of perturbation in the data. Every decomposed spec-
tra can be deeply characterized by means of the modal assurance
criterion (MAC), which divides the spectra into frequency ranges
of equal modal characteristics. Those frequency ranges can be
studied in detail by different means. The results show that the
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3D plots with the phase of each perturbation in every detector are
very useful for monitoring purposes and for identifying different
types of phenomena.

As a general conclusion, all the methods applied are used to dis-
tinguish different sources of perturbation that can be tracked in the
neutron detectors. The standard traditional noise Fourier based
methods struggle to extract certain components of the signals with
high resolution. In the cases proposed, the characterization of the
neutron detectors frequency content is improved by applying
decomposition techniques in the frequency or in the time domain.
Besides, in the case of OMA methodology, the decomposition is
multivariate, so the results gather all the spectral information from
all the detectors in the reactor.

The article gives an overview of the possibilities of each
methodology. Nevertheless, more research is needed jointly with
the plants and the simulation groups to fully identify the different
harmonics and decomposed signals and spectra extracted with
these methods. The link between the spectral characteristics found
and the physical phenomena behind them needs to be further
investigated for every reactor.
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