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ABSTRACT 

In the H2020 CORTEX project, an interdisciplinary team developed neutron noise-based core 
monitoring techniques implemented as methods and tools based on the approaches of machine learning 
and artificial intelligence. These methods and tools allow the detection of anomalies in commercial 
nuclear reactor cores during operation by using the measurements of the fluctuations of the neutron flux 
– the so-called neutron noise – by very few detectors. The sensitivity of the techniques to changes of 
different inputs and model parameters were analyzed. Based on these analyses together with the return 
of experience gained from the operational history of neutron noise measurements, recommendations 
were derived on how the applicability and the accuracy of the newly developed methods and tools can 
be improved. 

 

INTRODUCTION 

 

For four years researchers from different disciplines worked together in the H2020 European research 
project CORTEX to develop new techniques and tools for core monitoring based on the measurement 
of the neutron noise. These techniques and tools are based on different machine learning approaches, 
including deep neural networks which are a subcategory of artificial intelligence.  

They have several diagnostics tasks at various hierarchical levels. At the uppermost level they should 
be able to detect anomalous behavior or neutron noise pattern. At the second level they should be able 
to classify the nature of the detected perturbation. Depending on the nature of the anomaly they should 
be able to detect parameters of the anomaly like its location at the third level.  

They use the existing measurement equipment for the neutron flux, i.e. the neutron flux detectors inside 
(in-core) and outside (out-of-core) of the reactor pressure vessel. The anomaly detection is done by 
analyzing measured neutron flux fluctuation and determining the cause of the measured noise pattern. 

The newly developed techniques are based on the application of different simulations used for training 
and validating the machine learning algorithms and on the use of signal processing and signal 
reconstruction.  
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The following different generic perturbations possibly causing neutron flux noise were identified [1] and 
used for the training and validation of the machine learning methods [2].  

• Axially travelling perturbations along given channels (such as inlet flow temperature perturbations). 

• Lateral vibrations of partially inserted control rods. 

• Inlet flow rate perturbations. 

• Core barrel vibrations (only the beam or pendular modes were considered). 

• Fuel assembly vibrations (cantilevered beam mode, simply supported on both sides modes, 
cantilevered beam, and simply supported modes). 

• Absorber of variable strength, where a spatially localized perturbation exists in a three-dimensional 
representation of the reactor core. 

Different sensitivity analyses were performed within the project at different stages of the model 
development. The sensitivity of the simulations of the neutron flux noise to changes of different inputs 
and model parameters was investigated, as well as the sensitivity of the tools to changes in the detector 
signals [3], [4]. The results of the sensitivity analyses indicated how the detection quality could be 
improved. Additionally, experience gained from the operational history of neutron noise measurements 
allowed to derive recommendations on how to improve the applicability and the accuracy of the newly 
developed methods and tools.  

The recommendations were based on analyses and simulations of the fluid structure interactions (FSI) 
of coolant and reactor pressure vessel internals, on the number, availability, and quality of the neutron 
flux instrumentation used by the machine learning tools and considerations on the data acquisition 
systems and results of the data processing and signal reconstruction of different pressurized water 
reactors. The recommendations are highlighted by using an italic font in the following sections. The 
details of the derivation of these recommendations were documented in a deliverable [5] of the CORTEX 
project. 

 

RECOMMENDATION IN VIEW OF FSI PHENOMENA IDENTIFICATION 

 

One source of perturbations during the stationary operation in a power reactor which could result in 
fluctuations of the neutron flux are oscillations of internals of the reactor pressure vessel (see e.g. [6], 
[7]). To better understand these kinds of perturbations, different models for the simulations of the fluid 
structure interactions between the reactor pressure vessel internals and the coolant flow were developed 
during the CORTEX project [8], [9].  

The following first set of recommendations target the identification of those anomalies which could be 
caused by FSI effects, i.e. vibrations of core internals. 

The first recommendation is to further investigate the correlation of the measured neutron noise with 
other measurements, like primary pressure gauges, displacement transducers, thermocouples, 
accelerometers mounted to the RPV head, acoustic instrumentation, or main coolant pump supply 
current. 

The correlation with those quantities were already successfully used for the identification of other 
phenomena in the reactor core [10]. The use of those signals by the machine learning tools as developed 
in CORTEX would require the use of multi-physics models during the learning phase to create 
corresponding training data. 

The next recommendation is to measure the neutron flux and other quantities under special operating 
conditions, like commissioning tests, start-up, shutdown, partial load, or the unavailability of one main 
coolant pump. An example for measurements during the slowdown of the main coolant pumps were 
described in [6] showing the excitation of different oscillations with different natural frequencies.  

Another recommendation is to use information from operational experience because defects or wear 
can be a sign for increased motion in the affected area. An example for such a correlation was the 
fretting damages found at the corners of spacers resulting from static and dynamic fuel assembly 
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deformations [11]. It needs to be considered that those correlations are rather vague and do not provide 
quantitative information. 

Beside the use of existing measurement equipment, the installation of new detectors could provide new 
insight, but would require potential costly work for qualification and integration. Still, another 
recommendation is to include in-core accelerometers in the fuel elements and at the core barrel. An 
example for this was reported in [12]. In [13] such additional detectors were recommended to understand 
the phenomenon of changing neutron flux noise amplitudes in German PWRs over different reactor 
cycles.  

Those new detectors would be able to quantify the motions of the core internals, but the question of the 
driving forces exciting the structures might still be unresolved. Therefore, another recommendation is to 
develop and add in-core detectors capable to measure the coolant velocity in axial and radial direction. 
The time of commissioning tests of new plants could be used to perform such measurements, e.g. by 
using fuel assembly dummies during pump tests, because then there will most likely be lower 
requirements with regard to nuclear safety.  

The final recommendation with respect to FSI consideration is to implement scaled mock-up 
experiments. In such experiments, FSI phenomena could be investigated in detail and without nuclear 
safety requirements, although it would be important to meet relevant dimensionless parameters and 
other boundary conditions as they occur in real nuclear power plants. 

 

RECOMMENDATION BASED ON THE DEPENCENCY OF THE MACHINE LEARNING-
BASED UNFOLDING ON THE CORE INSTRUMENTATION 

 

For recovering the driving perturbation, it is necessary to train and validate the machine learning based 
core monitoring techniques and tools. This was done by using simulations in time- or frequency-domain 
and by determining the neutron flux values at the detector locations for postulated anomalies. Those 
simulated detector readings were then used as input for the machine learning tools. The newly 
developed tools and techniques were applied to both simulated data and data measured at power plants 
[2]. But only for simulated data, the so-called ground truth, i.e. the anomaly causing the neutron flux 
noise, was known. Therefore, only simulations were used to determine the sensitivity of the tools and 
techniques to modifications of the core instrumentation. 

The different anomalies considered as possible causes for the neutron flux noise in power reactors had 
in common that they induced a space-dependent neutron noise in the entire system. For the 
determination of the type and location of an anomaly, it was found to be crucial to examine the amplitude 
and phase at different spatial points inside the reactor core as well as the correlation of these values. 
Different anomalies showed different characteristic spatial distributions, like a shift of the phase or out-
of-phase behavior.  

To understand this behavior, the induced neutron noise 𝛿𝜙(r, 𝑡) needs to be examined in more detail. 

In linear theory, it can be expressed as the sum between a point-kinetic response 𝛿𝑃(𝑡)𝜙0(r) and the 

fluctuations of a so-called shape function 𝛿𝜓(r, 𝑡) [14], i.e. 

𝛿𝜙(r, 𝑡) = 𝛿𝑃(𝑡)𝜙0(r) + 𝛿𝜓(r, 𝑡) 

In the equation above, 𝛿𝑃(𝑡) represents the fluctuations of the amplitude factor and 𝜙0(r) is the static 
flux. The equation shows that the space-dependence of the point-kinetic response is always given by 
the static flux 𝜙0(r) and is thus independent of the applied perturbation. The space-dependence of the 

fluctuations of the shape function 𝛿𝜓(r, 𝑡) can be any. Therefore, the ability to “see” in the measured 
neutron noise an anomaly specific spatial dependency depends on how overwhelming the fluctuations 
of the shape function are in comparison with the fluctuations of the amplitude factor. The machine 
learning-based tools need to be trained in a way, that they recognize with readings of very few neutron 
detectors a significant enough spatial dependence of the fluctuations of the shape function. 

For machine-learning tools, working in either frequency domain [15] or in time domain [16], it was shown 
that they were able to successfully identify the considered anomalies, based on simulated training and 
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validation data. As mentioned above, the validation was done with simulated data, because only for 
those the ground truth was known. Results of the quality of the machine-learning based tools for different 
reactors and anomalies can be found in [5], [15] and [16]. 

The sensitivity studies reported in [4] for simulations of the vibration of a fuel element with the program 
CORE SIM+ demonstrated the effect of the space dependency of the phase of the neutron flux noise 
for small changes in the location of vibrating fuel element. A small change in the location of the vibrating 
fuel assembly resulted in a change of the spatial phase distribution which could be detected at one of 
the detector locations in the investigated 3-loop pre-Konvoi reactor (R.P. #5 in Figure 1). Together with 
the strong spatial dependence of the magnitude of the neutron noise away from the noise source, the 
amplitude and phase throughout the core significantly deviates from point-kinetics. This means that the 
resulting space dependence of those quantities is sufficiently correlated to the location of the 
perturbation to make the unfolding using machine learning possible. 

  

Figure 1: The phase of the thermal neutron flux noise simulated for a 3-loop pre-Konvoi reactor with 
slightly changed x-positions of the vibrating fuel assembly (left 4.3 mm upwards, right 4.3 

mm downwards). The positions of the in-core neutron flux detectors are marked with R.P.#1-
6. Results reproduced from [4]. 

From these observations two recommendations could be derived: The first one is that the detectors 
should be homogeneously distributed across the reactor core. This recommendation was also supported 
by the experiences gained during the training, validation and testing of the frequency domain-based 
machine learning tool [15]. The second one is to have a high in-core detector coverage. As can be seen 
from Figure 1, the number of installed detectors in the investigated pre-Konvoi reactors seemed to be 
at the lower end needed to identify the exact location of a single vibrating FA. 

As those results were obtained using simulated data also for validating and testing them, it will be 
necessary in the future to confirm them using actual measurements in power plants with known 
perturbations. 

 

RECOMMENDATION BASED ON RESULTS OF DATA PROCESSING AND 
RECONSTRUCTION 

 

During the CORTEX project different data processing methods as well as data reconstruction methods 
[17] were applied to the measurements from different pre-Konvoi and VVER reactors [5], [2]. The Fourier 
analysis was the main technique used to evaluate acquired data from the neutron flux measurements 
as well as from other detectors, like reactor head accelerometers and the coolant pressure. Also used 
were joint time-frequency analysis and singular spectrum analysis.  

Signal reconstruction methods were applied to the measurements of the self-powered neutron detectors 
(SPND). By comparing reconstructed and actual detector signals, it is possible to determine faults of the 
detector signals and to estimate the signal-to-noise ratio. The reconstruction works by using the 
correlation between different detectors and (re)construct the signal of a detector by estimating it from 
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the measurements at the correlated detectors (see Figure 2). The exact algorithm of signal 
reconstruction used in the CORTEX project was described in [17].  

 

Figure 2: Example for the reconstruction (red) of a partially distorted SPND signal (dark blue). Results 
reproduced from [5] 

Based on the experiences gained by the application of data acquisition, processing, and reconstruction 
during the CORTEX project the following recommendations were derived. 

For SPNDs, it is recommended to have a high detector density with a uniform distribution throughout 
the reactor core, to know the transfer function of each SPND, to normalize the signal of each SPND 
against its concurrent steady state component, and to correct the burnout rate of each SPND 
individually.  

For ionization chambers, it is recommended to place them in the upper and lower positions against the 
reactor head accelerometers for the detection and determination of core barrel movements. 

Also, it is recommended to record the signals of the accelerometers as well as of pressure fluctuations 
simultaneously with the reactor instrumentation and to use a uniform time base for all measurements of 
the whole plant. 

To compare the measurements between different plants, it is recommended to use the same parameters 
for the measurements and their analysis (like sampling frequency, spectral resolution, normalization, 
frequency range). 

The signals of in-core detectors often contain noise or other disturbances. It is therefore recommended 
to use reconstructed signals instead of the raw signals as inputs for the machine learning-based tools 
and techniques.  

 

CONCLUSION 

 

The recommendations reported here aim at improving the applicability and the accuracy of the methods 
and tools developed during the CORTEX project. However, they can also improve the applicability of 
neutron noise analysis for plant surveillance in general. Two groups of recommendations were made. 
The first one includes measures which can be taken based on the currently installed detectors. 
Especially measurements during special operational conditions might provide additional insight. As 
several new reactors are expected to go through this phase in Europe during the next years, this might 
be a unique opportunity to acquire such knowledge. Alternatively, it might be worthwhile to search for 
data acquired during the commissioning of already existing reactors. Several of these recommendations 
were already applied during the measurement campaigns during the CORTEX project.  

The second group is about increasing the number of detectors or installing additional detectors 
measuring complementary physical quantities. The later would not only require the development of new 
detectors but would also result in changes in the instrumentation & control systems of the reactors, for 
which licensing through the regulator would be necessary. 
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