

Analysis and interpretation of the first CROCUS reactor neutron noise
experiments using an improved point-kinetics model

A. Brighenti1, S. Santandrea1, I. Zmijarevic1*

1DES/ISAS/DM2S/SERMA/LTSD

Université Paris-Saclay, CEA, Service d'études des réacteurs et de mathématiques appliquées,
91191, Gif-sur-Yvette, France

alberto.brighenti@cea.fr; simone.santandrea@cea.fr; igor.zmijarevic@cea.fr;

ABSTRACT

In the framework of the European project CORTEX, included in the H2020 program, a new Improved
Point-Kinetics (IPK) model has been developed and validated on the neutron noise measurements recorded
during the experimental campaigns carried out with the CROCUS reactor, at the École Polytechnique
Fédérale de Lausanne (EPFL) in Switzerland. In the first part of this paper, the methodology for the
experimental data analysis developed by CEA is presented and its outcomes are compared to those obtained
by the EPFL team. In the second part, taking as reference the first CROCUS experimental campaign, the
present work presents a series of interpretive exercises performed with the IPK noise model aiming at
showing its simulation capabilities and at trying to address some of the discrepancies observed during the
validation exercise. With a deeper understanding of the phenomena inside CROCUS, the following step
foresees the application of the code to full reactor studies.

KEYWORDS: TRANSPORT CODE, NEUTRON NOISE, CROCUS, POINT KINETICS, DATA
ANALYSIS

1. INTRODUCTION

Despite being known since the beginning of the nuclear era, neutron noise is a topic of increasing interest
for the nuclear research and industrial community. The CORTEX H2020 European project, aims at setting
up methodologies and tools to develop non-invasive core monitoring techniques based on neutron noise. In
this context, a series of noise experiments has been performed in the CROCUS reactor [1] moving the fuel
pins with an oscillating device called COLIBRI [2] and recording the variations of neutron flux with various
detectors located in the core. Using different imposed amplitudes (A) and frequencies (ωc) of oscillations
[3], twenty different tests have been performed recording signal in selected detectors’ positions.
Being a participant of the CORTEX project, CEA already performed various analyses of CROCUS
experiences, firstly, by using a simple point-kinetics model [4] and then by developing a more complex
noise model based on an Improved Point-Kinetic approach (IPK), validated on the experimental data from
the first CROCUS experimental campaign.
After the first part of the work, in which the CEA methodology for the treatment of experimental data is
presented, the second part shows some parametric and interpretive exercises performed with IPK model to
investigate the dependence of noise amplitude on the frequency of oscillation and on a non-monochromatic
mechanical displacement signal.

2. ANALYSIS OF EXPERIMENTAL DATA

Apart from the noise model [5], CEA developed its own simple and computationally fast methodology to
estimate the detector Cross-Power Spectral Densities (CPSD), whose outcomes have been compared to

mailto:alberto.brighenti@cea.fr
mailto:simone.santandrea@cea.fr
mailto:igor.zmijarevic@cea.fr

A. Brighenti, et al.

those available in literature [6]. This exercise does not aim at substituting previous analyses, but rather at
developing the necessary know-how for signal analysis and develop a critical overview of the state of art.
The MATLAB scripts used for the analysis can be found in Appendix A. Firstly, the normalized detector
signals 𝑥𝑥𝑖𝑖 is obtained as:

 𝑥𝑥𝑖𝑖(𝑡𝑡) =
𝜏𝜏𝑖𝑖,𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡)
�̅�𝜏𝑖𝑖,𝑟𝑟𝑟𝑟𝑟𝑟

 (1)

where in Eq. (1), 𝜏𝜏𝑖𝑖,𝑟𝑟𝑟𝑟𝑟𝑟 is the raw temporal signal for detector 𝑖𝑖, �̅�𝜏𝑖𝑖,𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡) is the arithmetic average of the
raw signal. As the detector transfer function is unknown, but assumed to be linear, the chosen normalization
allows to eliminate detector dependent quantities (e.g. efficiency) and, therefore, to compare the detectors
with each other. Since the mean value chosen for the signal normalization is arbitrary, no major differences
are expected, with respect to previous analyses. However, differently from [6], the detector signals are not
smoothed using a moving average for two reasons: the first one is to eliminate the additional computational
cost required by the averaging procedure, while the second one deals with the preservation of the
measurements integrity. The advantage of signal smoothing is that it effectively removes possible impulsive
spikes in the signals, however the treated signal results may be altered with the choice of an excessively
long averaging window, which by the rule of thumb should be lower than few percent (<5%) of the points
available in the oscillation period.
The CPSDs evaluated for all the possible permutation of 𝑗𝑗 -th normalized detector signal (𝑗𝑗 = 3, . . ,10)
paired with detector #5, see Figure 1, and they are computed as:

 𝐶𝐶𝑃𝑃𝑃𝑃𝐷𝐷𝑥𝑥,5(𝜔𝜔) = 𝑌𝑌𝑗𝑗(𝜔𝜔) × 𝑌𝑌5∗(𝜔𝜔) (2)

where in Eq. (2), 𝑌𝑌𝑗𝑗 = ℱ �𝑥𝑥𝑗𝑗(𝑡𝑡)� is the Fourier transform ℱ of signal 𝑥𝑥𝑗𝑗(𝑡𝑡) and 𝑌𝑌𝑗𝑗∗ is its complex conjugate.

Figure 1. 𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 amplitude for experiment #12 (A = 1.85 mm, ωc = 0.097 Hz) for pairs 6&5 (top left), 3&5 (top

right), 4&5 (bottom left) and 10&5 (bottom right). The peak amplitude at ωc is marked with a red cross.

The CPSD uncertainties are quantified using the bootstrap random sampling with replacement method [7]
[8] [9]. With this technique, each detector time signal is cut in segments with the length of a period
identifying each segment with an index, see Figure 2a. Then a set of random number is generated and the
segments, whose indexes corresponds to the previously generated random numbers, are used to build the

Analysis and interpretation of the first CROCUS reactor neutron noise experiments using an improved
point-kinetics model

so called “resampled” signal on which the CPSD are computed, see Figure 2b. Here, the bootstrapping with
replacement performs a total of 1000 resampling, compared to the 100k iterations performed in the
reference analysis [6]. The bootstrap technique allows to increase the number of sampled available for the
analysis and therefore to have an estimation of the average CPSD amplitudes and phases and their
associated standard deviations. The reduction of the number of iterations allows to reduce significantly the
computational resources needed to process the data, without affecting the values of the quantities of interest
while maintaining an acceptable estimation of the uncertainties associated to the measurements [7].
Moreover, even if some impulsive peaks are present in the signals as these have not been smoothed, the
bootstrap method and the following resampling allows to reduce the weight of the peaks in the final outcome.

Figure 2. Visual example (a) before and (b) after the use of the bootstrap method on an ideal sine curve.

According to general CORTEX guidelines [3], the CPSDs amplitude and phases are normalized to pair 6&5,
see Figure 3 and Figure 4, respectively, and the results show that concerning the outcomes of the two
procedures give consistent results in for the average quantities proving the accuracy and reliability, while
the quantified uncertainties are relatively different as a consequence of the different assumptions adopted
(smoothing, normalization, number of bootstrap iterations, …).

(a) (b)
Figure 3. Measured relative CPSD (a) amplitudes and (b) phases for experiment #12 as obtained from EPFL

(grey bars) and CEA (blue bars). Error bars indicates the 95% confidence interval.

A. Brighenti, et al.

(a) (b)
Figure 4. Measured relative CPSD (a) amplitudes and (b) phases for experiment #13 as obtained from EPFL

(grey bars) and CEA (blue bars). Error bars indicates the 95% confidence interval.

3. INTERPRETIVE AND PARAMETRIC STUDIES OF COLIBRI EXPERIENCES

3.1. Simulation setup

The IPK model used for the simulation of neutron noise is developed starting from the flux and precursors
concentration equations:

�
1
𝑣𝑣
𝜕𝜕𝑡𝑡 + Ω ⋅ ∇ + Σ�𝑡𝑡(𝑟𝑟,𝐸𝐸, 𝑡𝑡) �𝜓𝜓 = 𝐻𝐻𝜓𝜓 +

𝐹𝐹𝑝𝑝
𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑

𝜙𝜙 +
𝐹𝐹𝑑𝑑𝐶𝐶
𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑

 (3)

𝜕𝜕𝑡𝑡𝐶𝐶𝑖𝑖(𝑟𝑟, 𝑡𝑡) = −�̅�𝜆𝑖𝑖𝐶𝐶𝑖𝑖(𝑟𝑟, 𝑡𝑡) + 𝛽𝛽𝑖𝑖 �𝑑𝑑𝐸𝐸′
𝐸𝐸

𝜈𝜈Σ𝑓𝑓(𝑟𝑟,𝐸𝐸′, 𝑡𝑡)𝜙𝜙(𝑟𝑟,𝐸𝐸′, 𝑡𝑡), (4)

Where 𝑟𝑟 is the spatial coordinate, 𝐸𝐸 is the energy group, 𝛺𝛺 is the direction angle, 𝑡𝑡 the time, Σ�𝑡𝑡(𝑟𝑟,𝐸𝐸, 𝑡𝑡) is
the total cross section accounting for the 𝐷𝐷𝐵𝐵2 coefficient, 𝜓𝜓 = 𝜓𝜓(𝑟𝑟,𝐸𝐸,𝛺𝛺, 𝑡𝑡) is the angular flux, 𝜙𝜙 =
𝜙𝜙(𝑟𝑟,𝐸𝐸, 𝑡𝑡) is the scalar flux, 𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑 is the dynamic eigenvalue [10], Σ𝑓𝑓 is the macroscopic fission cross section,
𝜈𝜈 is the average number of neutrons produced by fission, 𝛽𝛽𝑖𝑖 is the fraction of delayed neutron for family 𝑖𝑖.
The prompt and delayed fission sources are identified by 𝐹𝐹𝑝𝑝 and 𝐹𝐹𝑑𝑑𝐶𝐶 = ∑ 𝜒𝜒𝑑𝑑,𝑖𝑖𝜆𝜆𝑖𝑖𝐶𝐶𝑖𝑖

𝑁𝑁𝑑𝑑
𝑖𝑖=1 , where 𝐶𝐶𝑖𝑖 contains

the convolution integral for the i-th precursor concentration whose decay constant is 𝜆𝜆𝑖𝑖. Differently from
the traditional point-kinetics approach [11] [12], the angular flux is factorized with the shape 𝑃𝑃(𝑟𝑟,𝐸𝐸,Ω, 𝑡𝑡)
and power 𝑃𝑃(𝐸𝐸, 𝑡𝑡) functions that preserve their energy dependence. By adopting a suitable normalization
condition for all energy groups 𝑁𝑁𝐺𝐺 and after some manipulations, the final form of the point-kinetics
equation is:

𝜕𝜕𝑡𝑡𝑃𝑃 +
1
𝑣𝑣
〈𝜕𝜕𝑡𝑡𝑃𝑃〉𝑃𝑃 +

𝐽𝐽+ − 𝐽𝐽−

〈𝑃𝑃 𝑣𝑣⁄ 〉 𝑃𝑃 + 〈Σ�𝑡𝑡𝑃𝑃〉𝑃𝑃 − 〈𝐻𝐻𝑃𝑃〉𝑃𝑃 =
1

𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑
〈𝐹𝐹𝑝𝑝𝑃𝑃〉𝑃𝑃 +

1
𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑

〈𝐹𝐹𝑑𝑑𝐶𝐶〉 (5)

where 〈… 〉 indicates the scalar product for space and angle. More details on the IPK model formulation and
the leakage model used to estimate the 𝐷𝐷𝐵𝐵2 coefficient can be found in [5] and [13], respectively.

Analysis and interpretation of the first CROCUS reactor neutron noise experiments using an improved
point-kinetics model

3.2. Effects of the higher frequency on noise amplitude

The amplitude of neutron noise depends on the oscillations of the delayed neutron source 𝐹𝐹𝑑𝑑𝐶𝐶, since in the
IPK model, this is the only term coupled in time by means of the quadrature formula used [10]. Therefore
it is worth investigating the effects of various frequencies of oscillations 𝜔𝜔𝑐𝑐 on this operator. Consider that
the period of oscillation is discretized in 𝑀𝑀 time steps and suppose to sit on one of such given time instants,
say 𝑡𝑡𝑘𝑘: if one computes explicitly the weights to each time interval 𝑡𝑡𝑘𝑘′ for a generic precursor family 𝑖𝑖 with
decay constant 𝜆𝜆𝑖𝑖, it turns out that with 1 𝜔𝜔𝑐𝑐⁄ ≪ 𝜆𝜆𝑖𝑖, the weights tend to be uniform among all the time steps
𝑡𝑡𝑘𝑘′ with 𝑘𝑘′ = 1, … ,𝑀𝑀 . On the other side, if 1 𝜔𝜔𝑐𝑐⁄ ≫ 𝜆𝜆𝑖𝑖 , the weights decrease exponentially as the
difference 𝑡𝑡𝑘𝑘 − 𝑡𝑡𝑘𝑘′ increases for 𝑘𝑘 = 1, … ,𝑀𝑀 with 𝑘𝑘 ≠ 𝑘𝑘′ . In fact, looking at the values of the decay
constant of delayed neutron precursors, if 𝜆𝜆𝑖𝑖 is larger than the period of oscillations (𝜆𝜆𝑖𝑖 ≫ 1 𝜔𝜔𝑐𝑐⁄), the
precursor concentrations in the system cannot reach their equilibrium during a cycle, which means that they
do not decay sufficiently to induce a significant variation of the delayed source. Considering the extreme
value for the frequency, i.e. 𝜔𝜔𝑐𝑐 = ∞, one can imagine that the oscillation degenerates on an “intermediate
stationary” state with negligible fluctuations of the delayed source. On the opposite, if 𝜆𝜆𝑖𝑖 ≪ 1 𝜔𝜔𝑐𝑐⁄ , during
the oscillation period, the concentration for the 𝑖𝑖 -th family may reaches equilibrium, so it may decay
significantly contributing to the fluctuations of the delayed source and therefore of the neutron flux.
According to [14] [15], when using the classical point-kinetics transfer function, if the frequency of
oscillation increases by one order of magnitude, the amplitude of the transfer function 𝐺𝐺(𝑗𝑗𝜔𝜔), is reduced
by a factor (almost) two, see Figure 5. In addition, it is clear that the largest amplitude reduction occurs
when passing from 0.1 Hz to 2.0 Hz, while beyond this threshold the reactor transfer function starts to
flatten. The IPK model captures the expected behavior of the transfer function. In fact, once a COLIBRI
displacement is fixed and the simulations are performed considering various 𝜔𝜔𝑐𝑐, the amplitudes of 𝐶𝐶𝑃𝑃𝑃𝑃𝐷𝐷𝑥𝑥,5
decrease as the 𝜔𝜔𝑐𝑐 increases up to an asymptotic value that corresponds to the frequency values where the
transfer function starts to flatten. The computed results show that the amplitude decreases in the frequency
range from 0.1 Hz to 2.0 Hz, according to what is expected from the theory, the CPSDs amplitudes are
reduced by a factor ~1.76 (on average) , see Figure 6, while beyond the 2.0 Hz threshold, the reactor
dynamics is less sensitive to the increase of 𝜔𝜔𝑐𝑐.

Figure 5. Magnitude of critical CROCUS reactor transfer function, when using classical point-kinetics with

parameters from [16].The frequency range of interest (0.1 Hz – 2.0 Hz) is highlighted in green.

A. Brighenti, et al.

Figure 6. With a fixed oscillation amplitude of 1.85 mm, 𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝒙𝒙,𝟓𝟓 for a parametric study with various 𝝎𝝎𝒄𝒄.

3.3. Analysis and reconstruction of COLIBRI movement

In the domain of numerical simulations, the quality of the output results highly depends on the quality of
the input parameters and in this case it is the oscillation amplitude. The fuel pins oscillate thanks to a
crankshaft mechanism that moves the top COLIBRI plate, connected to the bottom one by an aluminum
rod. Since the two plates are not rigidly jointed in the translational movement, some de-synchronization
due to inertia effects may arise between the two. Moreover, due to the mechanical limitations of the machine,
the imposed movement is not an ideal sine curve, see Figure 7, but it shows a flattened region on the top
and bottom boundaries. The spectral analysis of this “almost-sinusoidal” movement, see Figure 8, shows
higher frequencies, which can be either natural harmonics (𝜔𝜔 = 𝑛𝑛𝜔𝜔𝑐𝑐 ,𝑛𝑛 ∈ ℕ+) or not, give indeed a
contribution to the global movement. Therefore, it turns out that a simulation with an ideal sine curve may
be a rude approximation causing some discrepancies.

Figure 7. Time segments of raw top (blue) and bottom (orange) COLIBRI plates signals for experiment #13

(A = 2.0 mm, ωc = 0.972 Hz).

Analysis and interpretation of the first CROCUS reactor neutron noise experiments using an improved
point-kinetics model

Figure 8. Frequency spectrum of top (blue) and bottom (orange) COLIBRI plates signals for experiment #13

(A = 2.0 mm, ωc = 0.972 Hz).

To improve the representativeness of the imposed shift, rather than the ideal/monochromatic approximation
used so far, a reconstructed/polychromatic signal has been build. For conservative reasons [17], the bottom
plate signal is chosen as reference and so the new displacement has been obtained and by superimposing
the first 𝑁𝑁𝑘𝑘 = 10 harmonics of the signal Fourier spectrum as:

𝐴𝐴Δ𝑥𝑥(𝑡𝑡) = �𝐴𝐴𝑘𝑘 ⋅ cos(2𝜋𝜋𝑘𝑘𝜔𝜔𝑐𝑐)
𝑁𝑁𝑘𝑘

𝑘𝑘=1

 (6)

where 𝐴𝐴Δ𝑥𝑥(𝑡𝑡) is reconstructed shift of the pins and 𝐴𝐴𝑘𝑘 is the amplitude corresponding to the 𝑘𝑘-th harmonic.
Then as done for the simulation using the monochromatic displacement, a set of 𝑁𝑁 discrete time equally
spaced points are identified on the reconstructed signal, see Figure 9, and these are used as reference to
compute the static flux distributions necessary to the IPK model.

Figure 9. Bottom plate reconstructed (blue solid line) and monochromatic (dashed black line) signals for

experiment #13. Equally spaced discrete points are also reported (red squares).

A. Brighenti, et al.

Using the reconstructed COLIBRI signal, the computed results show a good agreement for the computed
results of the (to pair 6&5) CPSDs amplitudes and phases for experiment #12 and #13, see Figure 10-
Figure 12. From the experimental point of view, the outcomes of EPFL and CEA analyses give consistent
results. On the computational side, instead, both simulations with the ideal mechanical displacement, return
slightly lower signal amplitude, possibly due to the sensitivity of the point-kinetics transfer function with
𝜔𝜔𝑐𝑐 < 2𝐻𝐻𝐻𝐻 [15], see also Paragraph 3.2. The relative phase is within the error bars for experiment #12, with
except of detector #7 showing an unexpected behavior currently under investigation. For experiment #13
with the higher frequency of oscillation, the relative phase measures few millisecond and the computed
results fall mostly inside the error bars or they are outside the uncertainty intervals of few milliseconds.

Figure 10. Comparison of measures and computed CPSDx,5 amplitudes for experiment (a) #12 and (b) #13.
Results obtained with reconstructed and ideal [5] signal are reported as orange bars and black stars,

respectively.

Figure 11. Comparison of measures and computed relative (to pair 6&5) CPSDx,5 amplitudes for experiment
(a) #12 and (b) #13. Results obtained with reconstructed and ideal [5] signal are reported as orange bars and

black stars, respectively.

Analysis and interpretation of the first CROCUS reactor neutron noise experiments using an improved
point-kinetics model

Figure 12. Comparison of measures and computed relative (to pair 6&5) CPSDx,5 phases for experiment (a)
#12 and (b) #13. Results obtained with reconstructed and ideal [5] signal are reported as orange bars and

black stars, respectively.

Concerning the simulation with the reconstructed COLIBRI signal, in principle, this should be a better
representation of the actual shift. The absolute CPSDs show higher detector responses with respect to the
case with the monochromatic displacement [5] and the reason behind this difference may lay behind the
fact that the shapes used in the IPK model are those obtained from the static stimulations and that, differently
from the traditional approaches [12], these are not updated at the end of the iterations using as correction
algorithm of the kind presented in [10]. Concerning the phases, no major differences are observed when
using the monochromatic or reconstructed COLIBRI signal, as the shape update would rather modify its
normalization, therefore the overall level of the signal, rather than the spatial distribution.

4. CONCLUSIONS

In the present work, the latest advancements in CEA analysis of the first CROCUS noise experimental
campaign have been presented. The first part presents the methodology set up for the analysis of
experimental data that gives consistent results with respect to those obtained in previous works. The second
part presents some parametric and interpretive studies performed with the validated Improved Point-
Kinetics noise model developed by CEA. The first include the analysis of the effects of the frequency of
oscillation on the noise amplitude, showing that as expected from literature, with increasing frequencies,
the amplitude of the reactor transfer function decreases. This should mean that the higher the frequency of
oscillation, the more difficult it would be to detect the flux perturbation. On the other hand, the exercises
using a reconstructed COLIBRI displacement signal show that higher order harmonics give a not negligible
to the final amplitude of oscillation and therefore these stress the importance carefully determining the
simulation input parameters. In conclusion, the present paper proved the accuracy of both CEA
experimental and computational analysis tools in view of their future applications to industrial cases.

ACKNOWLEDGMENTS

The CORTEX project received funding from the Euratom Research and Training Programme 2014-2018
under grant agreement No 754316. The CEA team would like to thank the EPFL team for providing their
experimental results and for the fruitful discussions during all project activities.

REFERENCES

A. Brighenti, et al.

[1] V. Lamirand, A. Rais, S. Hübner, C. Lange, J. Pohlus, U. Paquee, C. Pohl, O. Pakari, P. Frajtag, D.
Godat, M. Hursin, A. Laureau, G. Perret, C. Fiorina and A. Pautz, "Neutron noise experiments in the
AKR-2 and CROCUS reactors for the European project CORTEX," ANIMMA 2019, EPJ Web of
Conferences 225, 04023 (2020), 2019, https://doi.org/10.1051/epjconf/202022504023.

[2] V. Lamirand, P. Frajtag, D. Godat, M. Hursin, G. Perret, O. Pakari, A. Rais, C. Fiorina and A. Pautz,
"The COLIBRI programme in CROCUS : characterisation of the fuel rods oscillator," ANIMMA
20199, EPJ Web of Conferences 225, 04020 (2020), 2019,
https://doi.org/10.1051/epjconf/202022504020.

[3] V. Lamirand, M. Hursin, A. Rais, S. Hubner, C. Lange, J. Pohlus, U. Paquee, C. Pohl, O. Pkari and
A. Laureau, "Experimental Report of the 1st campaign at AKR-2 and CROCUS," CORTEX - D2.1,
03 Dec. 2018.

[4] A. Brighenti, S. Santandrea, I. Zmijarevic and Z. Stankovski, "Interpretation of COLIBRI
measurements in the CROCUS research reactor using a point-kinetics reactor model," submitted to
the PHYTRA5 conference, 2020.

[5] A. Brighenti, S. Santandrea, I. Zmijarevic and Z. Stankovski, "Validation of a time-dependent
deterministic model for neutron noise on the first CROCUS experimental measurements," submittted
to ANS M&C 2021 Conference, 2020.

[6] V. Lamirand, A. Rais, O. Pakari, M. Hursin, A. Laureau, J. Pohlus, U. Paquee, C. Pohl, S. Hubner, C.
Lange, P. Frajtag, D. Godat, G. Perret, C. Fiorina and A. Pautz, "Analysis of the first COLIBRI
neutron noise campaign in the CROCUS reactor for the European project CORTEX," in
PHYSOR2020: Transition to a Scalable Nuclear Future, Cambridge, United Kingdom, March 29th-
April 2nd, 2020.

[7] B. Efron and R. Tibshirani, An Introduction to the Bootstrap, Boca Raton (FL): Chapman &
Hall/CRC, 1993.

[8] D. Radulović, "On the Bootstrap and Empirical Processes for Dependent Sequences," Boston (MA),
Birkhäuser Boston, 2002, p. 345–364.

[9] E. Paparoditis, "Frequency Domain Bootstrap for Time Series," Boston (MA), Birkhäuser Boston,
2002, p. 365–381.

[10] A. Gammicchia, S. Santandrea, I. Zmijarevic, R. Sanchez, Z. Stankovski, S. Dulla and P. Mosca, "A
MOC-based neutron kinetics model for noise analysis," Ann. Nucl. Energy, vol. 137, 2019.

[11] A. F. Henry, Nuclear-Reactor Analysis, Cambridge (MA): The MIT Press, 1986.
[12] S. Dulla, E. H. Mund and P. Ravetto, "The quasi-static method revisited," Prog. Nucl. Energ., vol. 50,

no. 8, pp. 908-920, 2008.
[13] S. Santandrea, L. Graziano, I. Zmijarevic and B. Vezzoni, "A Leakage synthetic algorithm and a

Krylov approach for thermal iterations in APOLLO3 code in support to industrial applications,"
submitted to ANS M&C 2021 Conference.

[14] G. R. Keepin, Physics of Nuclear Kinetics, Addison-Wesley Publishing Co., 1965.
[15] D. L. Hetrick, Dynamics of Nuclear Reactors, The University of Chicago Press, 1971.
[16] OECD/NEA-4440, "Benchmark on the kinetics parameters of the CROCUS reactor," Plutonium

recycling, vol. 9, 2007.
[17] V. Lamirand, Private communications, 06 Oct. 2020.

Analysis and interpretation of the first CROCUS reactor neutron noise experiments using an improved
point-kinetics model

Appendix A
MATLAB scripts for experimental data processing

A.1 Load of experimental data

function [rawe,dt] = loadExp(ntest,daq,DET_ID)
 disp(['Loading Exp ' num2str(ntest) ' data...'])
 dt_old = 0;
 nDet = length(DET_ID);
 for iDet = 1:nDet
 try
 sig0 = load([herefosethepathofthefile]);
 fprintf('Loaded IsTEC_%.d\r',DET_ID(iDet));

 dt = sig0(1); sig0(1) = [];
 if dt_old ~= dt % Check if the detector have the same sampling time
 disp(['WARNING:> dt different for det: ' num2str(DET_ID(iDet))]);
 end
 dt_old = dt;
 rawe(:,DET_ID(iDet)) = sig0;
 end
 end
end

A.2 Manipulation of experimental data

clear all
close all
clc
s
ntest = [2:20]; % Number of the tests to be analyzed
daq = 'istec'; % Name of the DAS used

ARRAY_DET = 3:10; % Array of selected detectors for the analysis
nDet = max(ARRAY_DET); % Number of detectors
DET_ORDER = [8 6 7 10 3 9 4 5]; % Order of detectors with increasing distance from COLIBRI

refDet = 5; % Reference detector for CPSD signal
jDetRef = 6;
nBootstrap = 1000; % Number of bootstrap resampling

lbl = ''; % Label for the file output name

% 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
freq_nom = [0.0 1.0 1.0 0.5 1.5 2.0 0.1 0.5 1.0 0.1 0.5 0.1 1.0 0.5 0.1 1.0 1.5 2.0 0.1 1.0];
omega_fact = [0.8 1.2]; % Frequency lower/upper multiplication factor for maximum search

loadExpAgain = 1; % Call loadExp function
disp('Loading static experimental results--------------------------------')

for nn = ntest
 clear rawn rawe
 if loadExpAgain == 1
 [rawe,dt] = loadExp(nn,daq,ARRAY_DET); % Load the data
 dataR(nn).o = rawe; % Store the raw data into a struct in order to be able to use them
later
 Fs = 1/dt;
 if (nn == ntest(end))
 save('dataR.mat','dataR','Fs');
 end
 else
 if nn == ntest(1)
 load('dataR.mat');
 end
 rawe = dataR(nn).o;
 end

 % Normalize the signal

A. Brighenti, et al.

 for iDet = ARRAY_DET
 rawn(:,iDet) = rawe(:,iDet) / mean(rawe(:,iDet));
 end

 % Initialize bootsrap variables
 teta_b = zeros(nDet,nBootstrap); teta2_b = zeros(nDet,nBootstrap);
 f_b = zeros(nDet,nBootstrap); f2_b = zeros(nDet,nBootstrap);
 A_b = zeros(nDet,nBootstrap); A2_b = zeros(nDet,nBootstrap);
 Y_b = zeros(nDet,nBootstrap); Y2_b = zeros(nDet,nBootstrap);
 auto_b = zeros(nDet,nBootstrap); auto2_b = zeros(nDet,nBootstrap);
 autoY_b = zeros(nDet,nBootstrap); autoY2_b = zeros(nDet,nBootstrap);

 for bb = 1:nBootstrap
 clear sigr
 for iDet = ARRAY_DET
 if bb == 1
 freq_s = freq_nom(nn);
 period = 1/freq_s;
 sigr(:,iDet) = rawn(:,iDet);
 elseif bb > 1 % Resampling only if bootstrap is used
 freq_s = mean(mean(f_b(DET_ORDER,1:(bb-1))));
 period = 1/freq_s;
 [sigr(:,iDet),dt_new]= myBootstrap(iDet,rawn(:,iDet),period,dt);
 Fs = 1/dt_new;
 end
 end
 % Reinitialize variables
 teta_ = zeros(nDet,1); f_ = zeros(nDet,1); A_ = zeros(nDet,1); Y_ = zeros(nDet,1);
 teta2_ = zeros(nDet,1); f2_ = zeros(nDet,1); A2_ = zeros(nDet,1); Y2_ = zeros(nDet,1);
 auto_ = zeros(nDet,1); autoY_ = zeros(nDet,1); auto2_ = zeros(nDet,1); autoY2_ =
zeros(nDet,1);
 for iDet = ARRAY_DET
 %%
 fprintf('Test %d, Resampling %d/%d: doing APSD %d -
%d.\r',nn,bb,nBootstrap,iDet,iDet);
 [f,P1PA,~,~,~,~,Y2] = myCPSDlast(sigr(:,iDet),sigr(:,iDet),Fs); % Fourier Transform
 % Find the APSD peak in the interval around the nominal frequency and the second
harmonic
 % First harmonic
 ind1 = find(abs(f - omega_fact(1)*freq_s) == min(abs(f - omega_fact(1)*freq_s)));
 ind2 = find(abs(f - omega_fact(2)*freq_s) == min(abs(f - omega_fact(2)*freq_s)));
 P1_c = P1PA((ind1+1):(ind2-1));
 Y2_c = Y2((ind1+1):(ind2-1));
 ind_max = find(P1_c == max(P1_c));
 auto_(iDet) = P1_c(ind_max);
 autoY_(iDet) = Y2_c(ind_max);

 % Second harmonic
 ind1_2 = find(abs(f - omega_fact(1)*2*freq_nom(nn)) == min(abs(f -
omega_fact(1)*2*freq_nom(nn))));
 ind2_2 = find(abs(f - omega_fact(2)*2*freq_nom(nn)) == min(abs(f -
omega_fact(2)*2*freq_nom(nn))));
 P2_c = P1PA((ind1_2+1):(ind2_2-1));
 Y2_c = Y2((ind1_2+1):(ind2_2-1));
 ind_max_2 = find(P2_c == max(P2_c));
 auto2_(iDet) = P2_c(ind_max_2);
 autoY2_(iDet) = Y2_c(ind_max_2);

 %%%
 clear f P1PA ind_max ind_max_2
 fprintf('Test %d, Resampling %d/%d: doing CPSD %d -
%d.\r',nn,bb,nBootstrap,refDet,iDet);
 [f,P1PA,teta,YOUT,PA,~,Y2] = myCPSDlast(sigr(:,iDet),sigr(:,refDet),Fs);

 % First harmonic
 ind1 = find(abs(f - omega_fact(1)*freq_nom(nn)) == min(abs(f -
omega_fact(1)*freq_nom(nn))));
 ind2 = find(abs(f - omega_fact(2)*freq_nom(nn)) == min(abs(f -
omega_fact(2)*freq_nom(nn))));
 f_c = f((ind1+1):(ind2-1));
 P1_c = P1PA((ind1+1):(ind2-1));

Analysis and interpretation of the first CROCUS reactor neutron noise experiments using an improved
point-kinetics model

 YOUT_c = YOUT((ind1+1):(ind2-1));
 teta_c = teta((ind1+1):(ind2-1));
 ind_max = find(P1_c == max(P1_c));
 if isempty(ind_max) == 0
 teta_(iDet) = teta_c(ind_max);
 f_(iDet) = f_c(ind_max);
 A_(iDet) = P1_c(ind_max);
 Y_(iDet) = YOUT_c(ind_max);
 else
 teta_(nn,iDet) = 0;
 f_(iDet) = 0;
 A_(iDet) = 0;
 end

 % Second harmonic
 ind1_2 = find(abs(f - omega_fact(1)*2*freq_nom(nn)) == min(abs(f -
omega_fact(1)*2*freq_nom(nn))));
 ind2_2 = find(abs(f - omega_fact(2)*2*freq_nom(nn)) == min(abs(f -
omega_fact(2)*2*freq_nom(nn))));
 f2_c = f((ind1_2+1):(ind2_2-1));
 P2_c = P1PA((ind1_2+1):(ind2_2-1));
 YOUT2_c = YOUT((ind1_2+1):(ind2_2-1));
 teta_c2 = teta((ind1_2+1):(ind2_2-1));
 ind_max_2 = find(P2_c == max(P2_c));
 if isempty(ind_max_2) == 0
 teta2_(iDet) = teta_c2(ind_max_2);
 f2_(iDet) = f2_c(ind_max_2);
 A2_(iDet) = P2_c(ind_max_2);
 Y2_(iDet) = YOUT2_c(ind_max_2);
 else
 teta2_(iDet) = 0;
 f2_(iDet) = 0;
 A2_(iDet) = 0;
 end
 end % iDet
 teta_b(:,bb) = teta_; teta2_b(:,bb) = teta2_;
 f_b(:,bb) = f_; f2_b(:,bb) = f2_;
 A_b(:,bb) = A_; A2_b(:,bb) = A2_;
 Y_b(:,bb) = Y_; Y2_b(:,bb) = Y2_;
 auto_b(:,bb) = auto_;
 autoY_b(:,bb) = autoY_;
 auto2_b(:,bb) = auto2_;
 autoY2_b(:,bb) = autoY2_;
 end % bb

 for iDet = ARRAY_DET
 % Auto-Power Spectal Density
 CPSD(1).auto(nn,iDet) = mean(auto_b(iDet,:)); CPSD(1).autostd(nn,iDet) =
std(auto_b(iDet,:));
 CPSD(1).autoY(nn,iDet) = mean(autoY_b(iDet,:)); CPSD(1).autoYstd(nn,iDet) =
std(autoY_b(iDet,:));
 CPSD(2).auto(nn,iDet) = mean(auto2_b(iDet,:)); CPSD(2).autostd(nn,iDet) =
std(auto2_b(iDet,:));
 CPSD(2).autoY(nn,iDet) = mean(autoY2_b(iDet,:)); CPSD(2).autoYstd(nn,iDet) =
std(autoY2_b(iDet,:));
 % First harmonic
 CPSD(1).t(nn,iDet) = mean(teta_b(iDet,:)); CPSD(1).tstd(nn,iDet) = std(teta_b(iDet,:));
 CPSD(1).f(nn,iDet) = mean(f_b(iDet,:)); CPSD(1).fstd(nn,iDet) = std(f_b(iDet,:));
 CPSD(1).A(nn,iDet) = mean(A_b(iDet,:)); CPSD(1).Astd(nn,iDet) = std(A_b(iDet,:));
 CPSD(1).Y(nn,iDet) = mean(Y_b(iDet,:)); CPSD(1).Ystd(nn,iDet) = std(Y_b(iDet,:));
 % Second harmonic
 CPSD(2).t(nn,iDet) = mean(teta2_b(iDet,:)); CPSD(2).tstd(nn,iDet) = std(teta2_b(iDet,:));
 CPSD(2).f(nn,iDet) = mean(f2_b(iDet,:)); CPSD(2).fstd(nn,iDet) = std(f2_b(iDet,:));
 CPSD(2).A(nn,iDet) = mean(A2_b(iDet,:)); CPSD(2).Astd(nn,iDet) = std(A2_b(iDet,:));
 CPSD(2).Y(nn,iDet) = mean(Y2_b(iDet,:)); CPSD(2).Ystd(nn,iDet) = std(Y2_b(iDet,:));

 end
end % nn
save(['CPSD_' num2str(refDet) '_x' lbl '_b' num2str(nBootstrap) '.mat'],'CPSD');
disp('############################ END ############################')

A. Brighenti, et al.

A.2 CPSD function

function [f,AMP_CPSD,PHS_CPSD,YOUT,P1,PA,Y_,Y2_conj_] = myCPSDlast(sig1,sig2,Fs)
 % For sig1
 Y = fft(sig1); % Fourier Transform
 L = length(sig1);
 P2 = abs(Y/L);
 P1 = P2(1:ceil(L/2)+1);
 P1(2:end-1) = 2*P1(2:end-1); % Extract amplitude
 P1 = P1/P1(1);
 Y_ = Y(1:ceil(L/2)+1)/L;
 Y_(2:end-1) = 2 * Y_(2:end-1);
 Y_ = Y_/P1(1);
 Y = Y/P1(1);

 % For sig2
 Y2 = fft(sig2); % Fourier Transform
 L2 = length(sig2);
 Y2_conj = conj(Y2);
 PB = abs(Y2_conj/L2);
 PA = PB(1:ceil(L2/2)+1);
 PA(2:end-1) = 2*PA(2:end-1); % Extract amplitude
 PA = PA/PA(1);
 Y2_conj_ = Y2_conj(1:ceil(L2/2)+1)/L2; % Similarly to what is done to P1
 Y2_conj_(2:end-1) = 2 * Y2_conj_(2:end-1);
 Y2_conj_ = Y2_conj_/PA(1);
 Y2_conj = Y2_conj/PA(1);

 % Prepare output files
 f = [Fs*(0:ceil(L/2))/L]'; % Extract frequency
 AMP_CPSD = P1.*PA; % Extract amplitude
 PHS_CPSD = angle((Y.*Y2_conj)/L^2); % Extract phase
 PHS_CPSD=PHS_CPSD((1:ceil(L/2)+1));

 % Compute the product of two complew numbers by hand
 aY = real(Y_); bY = imag(Y_);
 cY2 = real(Y2_conj_); dY2 = imag(Y2_conj_);
 p_real = (aY.*cY2 - bY.*dY2);
 p_imag = (aY.*dY2 + bY.*cY2);

 YOUT = p_real + 1i .* p_imag;
end

A.3 Bootstrap resampling subroutine
function [sig_out, dt_out] = myBootstrap(iDet,sig_in,period,dt)
 % The period is not a multiple of dt, so it may happen that the number
 % of points per period (i.e. period/dt) is not an integer number.
 % Therefore I have to interpolate sig_in over a time vector with a dt
 % compatible with the period.
 mm = length(sig_in); % Number of points in the signal
 time_0 = dt * [0:(mm-1)]; % Initial time array

 points_per_period = floor(period/dt); % Set number of points per period
 period_1 = round(period * 1e4)/1e4; % Find an 'approximated' oscillation period
to remove some digits
 dt_out = period_1/points_per_period; % Set the chosen sampling time
 num_av_period = floor(time_0(end)/period_1); % Find number of available periods
 time_end = num_av_period*period_1; % Find final time of interpolating time vector
 time_1 = [0:dt_out:time_end]; % Build time array for interpolation
 sig_ip = interp1(time_0,sig_in,time_1,'linear'); % Interpolate the signal on the time array
 sig_ip = sig_ip'; % Transpose the interpolated vector into a
column vector

 nOffset = 100; % Number of periods to be cut at the beginning
of the signal

 tot_p = floor(length(sig_ip)/points_per_period); % Total available periods

Analysis and interpretation of the first CROCUS reactor neutron noise experiments using an improved
point-kinetics model

 % Do not consider the first 'nOffset' periods
 sig = sig_ip([(nOffset*points_per_period+1):(tot_p*points_per_period)]);
 nn = length(sig); % Number of points in the signal
 n_period_disp = floor(nn/points_per_period); % Number of available periods

 indBoot = randi(n_period_disp,n_period_disp,1);

 tmp = [];
 for pp = 1:length(indBoot)
 bb = indBoot(pp);
 indPoints = ((bb-1)*points_per_period+1):(bb*points_per_period);
 tmp = [tmp; sig(indPoints)];
 end
 sig_out = tmp;
end

	Analysis and interpretation of the first CROCUS reactor neutron noise experiments using an improved point-kinetics model
	ABSTRACT
	1. INTRODUCTION
	2. ANALYSIS OF EXPERIMENTAL DATA
	3. INTERPRETIVE AND PARAMETRIC STUDIES OF COLIBRI EXPERIENCES
	3.1. Simulation setup
	3.2. Effects of the higher frequency on noise amplitude
	3.3. Analysis and reconstruction of COLIBRI movement

	4. CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES
	Appendix A
	MATLAB scripts for experimental data processing
	A.1 Load of experimental data
	A.2 Manipulation of experimental data
	A.2 CPSD function
	A.3 Bootstrap resampling subroutine

