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ABSTRACT 

 
In the framework of the European project CORTEX, included in the H2020 program, a new Improved 
Point-Kinetics (IPK) model has been developed and validated on the neutron noise measurements recorded 
during the experimental campaigns carried out with the CROCUS reactor, at the École Polytechnique 
Fédérale de Lausanne (EPFL) in Switzerland. In the first part of this paper, the methodology for the 
experimental data analysis developed by CEA is presented and its outcomes are compared to those obtained 
by the EPFL team. In the second part, taking as reference the first CROCUS experimental campaign, the 
present work presents a series of interpretive exercises performed with the IPK noise model aiming at 
showing its simulation capabilities and at trying to address some of the discrepancies observed during the 
validation exercise. With a deeper understanding of the phenomena inside CROCUS, the following step 
foresees the application of the code to full reactor studies. 
 
KEYWORDS: TRANSPORT CODE, NEUTRON NOISE, CROCUS, POINT KINETICS, DATA 
ANALYSIS 
 

1. INTRODUCTION 
 
Despite being known since the beginning of the nuclear era, neutron noise is a topic of increasing interest 
for the nuclear research and industrial community. The CORTEX H2020 European project, aims at setting 
up methodologies and tools to develop non-invasive core monitoring techniques based on neutron noise. In 
this context, a series of noise experiments has been performed in the CROCUS reactor [1] moving the fuel 
pins with an oscillating device called COLIBRI [2] and recording the variations of neutron flux with various 
detectors located in the core. Using different imposed amplitudes (A) and frequencies (ωc) of oscillations 
[3], twenty different tests have been performed recording signal in selected detectors’ positions.  
Being a participant of the CORTEX project, CEA already performed various analyses of CROCUS 
experiences, firstly, by using a simple point-kinetics model [4] and then by developing a more complex 
noise model based on an Improved Point-Kinetic approach (IPK), validated on the experimental data from 
the first CROCUS experimental campaign. 
After the first part of the work, in which the CEA methodology for the treatment of experimental data is 
presented, the second part shows some parametric and interpretive exercises performed with IPK model to 
investigate the dependence of noise amplitude on the frequency of oscillation and on a non-monochromatic 
mechanical displacement signal. 
 

2. ANALYSIS OF EXPERIMENTAL DATA 
 
Apart from the noise model [5], CEA developed its own simple and computationally fast methodology to 
estimate the detector Cross-Power Spectral Densities (CPSD), whose outcomes have been compared to 
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those available in literature [6]. This exercise does not aim at substituting previous analyses, but rather at 
developing the necessary know-how for signal analysis and develop a critical overview of the state of art. 
The MATLAB scripts used for the analysis can be found in Appendix A. Firstly, the normalized detector 
signals 𝑥𝑥𝑖𝑖 is obtained as: 

 𝑥𝑥𝑖𝑖(𝑡𝑡) =
𝜏𝜏𝑖𝑖,𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡)
�̅�𝜏𝑖𝑖,𝑟𝑟𝑟𝑟𝑟𝑟

 (1)   

where in Eq. (1), 𝜏𝜏𝑖𝑖,𝑟𝑟𝑟𝑟𝑟𝑟 is the raw temporal signal for detector 𝑖𝑖, �̅�𝜏𝑖𝑖,𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡) is the arithmetic average of the 
raw signal. As the detector transfer function is unknown, but assumed to be linear, the chosen normalization 
allows to eliminate detector dependent quantities (e.g. efficiency) and, therefore, to compare the detectors 
with each other. Since the mean value chosen for the signal normalization is arbitrary, no major differences 
are expected, with respect to previous analyses. However, differently from [6], the detector signals are not 
smoothed using a moving average for two reasons: the first one is to eliminate the additional computational 
cost required by the averaging procedure, while the second one deals with the preservation of the 
measurements integrity. The advantage of signal smoothing is that it effectively removes possible impulsive 
spikes in  the signals, however the treated signal results may be altered with the choice of an excessively 
long averaging window, which by the rule of thumb should be lower than few percent (<5%) of the points 
available in the oscillation period. 
The CPSDs evaluated for all the possible permutation of 𝑗𝑗 -th normalized detector signal (𝑗𝑗 = 3, . . ,10) 
paired with detector #5, see Figure 1, and they are computed as: 
 

 𝐶𝐶𝑃𝑃𝑃𝑃𝐷𝐷𝑥𝑥,5(𝜔𝜔) = 𝑌𝑌𝑗𝑗(𝜔𝜔) × 𝑌𝑌5∗(𝜔𝜔) (2)   
 
where in Eq. (2), 𝑌𝑌𝑗𝑗 = ℱ �𝑥𝑥𝑗𝑗(𝑡𝑡)� is the Fourier transform ℱ of signal 𝑥𝑥𝑗𝑗(𝑡𝑡) and 𝑌𝑌𝑗𝑗∗ is its complex conjugate. 
 

 

 
Figure 1. 𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 amplitude for experiment #12 (A = 1.85 mm, ωc = 0.097 Hz) for pairs 6&5 (top left), 3&5 (top 

right), 4&5 (bottom left) and 10&5 (bottom right). The peak amplitude at ωc is marked with a red cross. 

The CPSD uncertainties are quantified using the bootstrap random sampling with replacement method [7] 
[8] [9]. With this technique, each detector time signal is cut in segments with the length of a period 
identifying each segment with an index, see Figure 2a. Then a set of random number is generated and the 
segments, whose indexes corresponds to the previously generated random numbers, are used to build the 
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so called “resampled” signal on which the CPSD are computed, see Figure 2b. Here, the bootstrapping with 
replacement performs a total of 1000 resampling, compared to the 100k iterations performed in the 
reference analysis [6]. The bootstrap technique allows to increase the number of sampled available for the 
analysis and therefore to have an estimation of the average CPSD amplitudes and phases and their 
associated standard deviations. The reduction of the number of iterations allows to reduce significantly the 
computational resources needed to process the data, without affecting the values of the quantities of interest 
while maintaining an acceptable estimation of the uncertainties associated to the measurements [7]. 
Moreover, even if some impulsive peaks are present in the signals as these have not been smoothed, the 
bootstrap method and the following resampling allows to reduce the weight of the peaks in the final outcome. 
 

Figure 2. Visual example (a) before and (b) after the use of the bootstrap method on an ideal sine curve. 

According to general CORTEX guidelines [3], the CPSDs amplitude and phases are normalized to pair 6&5, 
see Figure 3 and Figure 4, respectively, and the results show that concerning the outcomes of the two 
procedures give consistent results in for the average quantities proving the accuracy and reliability, while 
the quantified uncertainties are relatively different as a consequence of the different assumptions adopted 
(smoothing, normalization, number of bootstrap iterations, …). 
 

(a)  (b)  
Figure 3. Measured relative CPSD (a) amplitudes and (b) phases for experiment #12 as obtained from EPFL 

(grey bars) and CEA (blue bars). Error bars indicates the 95% confidence interval. 
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(a)  (b)  
Figure 4. Measured relative CPSD (a) amplitudes and (b) phases for experiment #13 as obtained from EPFL 

(grey bars) and CEA (blue bars). Error bars indicates the 95% confidence interval. 

 
3. INTERPRETIVE AND PARAMETRIC STUDIES OF COLIBRI EXPERIENCES 

 
3.1. Simulation setup 
 
The IPK model used for the simulation of neutron noise is developed starting from the flux and precursors 
concentration equations: 
 

�
1
𝑣𝑣
𝜕𝜕𝑡𝑡 + Ω ⋅ ∇ + Σ�𝑡𝑡(𝑟𝑟,𝐸𝐸, 𝑡𝑡) �𝜓𝜓 = 𝐻𝐻𝜓𝜓 +

𝐹𝐹𝑝𝑝
𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑

𝜙𝜙 +
𝐹𝐹𝑑𝑑𝐶𝐶
𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑

 (3)   

𝜕𝜕𝑡𝑡𝐶𝐶𝑖𝑖(𝑟𝑟, 𝑡𝑡) =  −�̅�𝜆𝑖𝑖𝐶𝐶𝑖𝑖(𝑟𝑟, 𝑡𝑡) + 𝛽𝛽𝑖𝑖 �𝑑𝑑𝐸𝐸′
𝐸𝐸

𝜈𝜈Σ𝑓𝑓(𝑟𝑟,𝐸𝐸′, 𝑡𝑡)𝜙𝜙(𝑟𝑟,𝐸𝐸′, 𝑡𝑡), (4)   

Where 𝑟𝑟 is the spatial coordinate, 𝐸𝐸 is the energy group, 𝛺𝛺 is the direction angle, 𝑡𝑡 the time, Σ�𝑡𝑡(𝑟𝑟,𝐸𝐸, 𝑡𝑡) is 
the total cross section accounting for the 𝐷𝐷𝐵𝐵2  coefficient, 𝜓𝜓 = 𝜓𝜓(𝑟𝑟,𝐸𝐸,𝛺𝛺, 𝑡𝑡)  is the angular flux, 𝜙𝜙 =
𝜙𝜙(𝑟𝑟,𝐸𝐸, 𝑡𝑡) is the scalar flux, 𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑 is the dynamic eigenvalue [10], Σ𝑓𝑓 is the macroscopic fission cross section, 
𝜈𝜈 is the average number of neutrons produced by fission, 𝛽𝛽𝑖𝑖 is the fraction of delayed neutron for family 𝑖𝑖. 
The prompt and delayed fission sources are identified by 𝐹𝐹𝑝𝑝 and 𝐹𝐹𝑑𝑑𝐶𝐶 = ∑ 𝜒𝜒𝑑𝑑,𝑖𝑖𝜆𝜆𝑖𝑖𝐶𝐶𝑖𝑖

𝑁𝑁𝑑𝑑
𝑖𝑖=1 , where 𝐶𝐶𝑖𝑖 contains 

the convolution integral for the i-th precursor concentration whose decay constant is 𝜆𝜆𝑖𝑖. Differently from 
the traditional point-kinetics approach [11] [12], the angular flux is factorized with the shape 𝑃𝑃(𝑟𝑟,𝐸𝐸,Ω, 𝑡𝑡) 
and power 𝑃𝑃(𝐸𝐸, 𝑡𝑡) functions that preserve their energy dependence. By adopting a suitable normalization 
condition for all energy groups 𝑁𝑁𝐺𝐺   and after some manipulations, the final form of the point-kinetics 
equation is: 
 

𝜕𝜕𝑡𝑡𝑃𝑃 +
1
𝑣𝑣
〈𝜕𝜕𝑡𝑡𝑃𝑃〉𝑃𝑃 +

𝐽𝐽+ − 𝐽𝐽−

〈𝑃𝑃 𝑣𝑣⁄ 〉 𝑃𝑃 + 〈Σ�𝑡𝑡𝑃𝑃〉𝑃𝑃 −  〈𝐻𝐻𝑃𝑃〉𝑃𝑃 =
1

𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑
〈𝐹𝐹𝑝𝑝𝑃𝑃〉𝑃𝑃 +

1
𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑

〈𝐹𝐹𝑑𝑑𝐶𝐶〉 (5)   

 
where 〈… 〉 indicates the scalar product for space and angle. More details on the IPK model formulation and 
the leakage model used to estimate the 𝐷𝐷𝐵𝐵2 coefficient can be found in [5] and [13], respectively. 
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3.2. Effects of the higher frequency on noise amplitude 
 
The amplitude of neutron noise depends on the oscillations of the delayed neutron source 𝐹𝐹𝑑𝑑𝐶𝐶, since in the 
IPK model, this is the only term coupled in time by means of the quadrature formula used [10]. Therefore 
it is worth investigating the effects of various frequencies of oscillations 𝜔𝜔𝑐𝑐 on this operator. Consider that 
the period of oscillation is discretized in 𝑀𝑀 time steps and suppose to sit on one of such given time instants, 
say 𝑡𝑡𝑘𝑘: if one computes explicitly the weights to each time interval 𝑡𝑡𝑘𝑘′ for a generic precursor family 𝑖𝑖 with 
decay constant 𝜆𝜆𝑖𝑖, it turns out that with 1 𝜔𝜔𝑐𝑐⁄ ≪ 𝜆𝜆𝑖𝑖, the weights tend to be uniform among all the time steps 
𝑡𝑡𝑘𝑘′  with 𝑘𝑘′ = 1, … ,𝑀𝑀 . On the other side, if 1 𝜔𝜔𝑐𝑐⁄ ≫ 𝜆𝜆𝑖𝑖 , the weights decrease exponentially as the 
difference 𝑡𝑡𝑘𝑘 − 𝑡𝑡𝑘𝑘′   increases for 𝑘𝑘 = 1, … ,𝑀𝑀  with 𝑘𝑘 ≠ 𝑘𝑘′ . In fact, looking at the values of the decay 
constant of delayed neutron precursors, if 𝜆𝜆𝑖𝑖  is larger than the period of oscillations (𝜆𝜆𝑖𝑖 ≫ 1 𝜔𝜔𝑐𝑐⁄  ), the 
precursor concentrations in the system cannot reach their equilibrium during a cycle, which means that they 
do not decay sufficiently to induce a significant variation of the delayed source. Considering the extreme 
value for the frequency, i.e. 𝜔𝜔𝑐𝑐 = ∞, one can imagine that the oscillation degenerates on an “intermediate 
stationary” state with negligible fluctuations of the delayed source. On the opposite, if 𝜆𝜆𝑖𝑖 ≪ 1 𝜔𝜔𝑐𝑐⁄ , during 
the oscillation period, the concentration for the 𝑖𝑖 -th family may reaches equilibrium, so it may decay 
significantly contributing to the fluctuations of the delayed source and therefore of the neutron flux. 
According to [14] [15], when using the classical point-kinetics transfer function, if the frequency of 
oscillation increases by one order of magnitude, the amplitude of the transfer function 𝐺𝐺(𝑗𝑗𝜔𝜔), is reduced 
by a factor (almost) two, see Figure 5. In addition, it is clear that the largest amplitude reduction occurs 
when passing from 0.1 Hz to 2.0 Hz, while beyond this threshold the reactor transfer function starts to 
flatten. The IPK model captures the expected behavior of the transfer function. In fact, once a COLIBRI 
displacement is fixed and the simulations are performed considering various 𝜔𝜔𝑐𝑐, the amplitudes of 𝐶𝐶𝑃𝑃𝑃𝑃𝐷𝐷𝑥𝑥,5 
decrease as the 𝜔𝜔𝑐𝑐 increases up to an asymptotic value that corresponds to the frequency values where the 
transfer function starts to flatten. The computed results show that the amplitude decreases in the frequency 
range from 0.1 Hz to 2.0 Hz, according to what is expected from the theory, the CPSDs amplitudes are 
reduced by a factor ~1.76 (on average) , see Figure 6, while beyond the 2.0 Hz threshold, the reactor 
dynamics is less sensitive to the increase of 𝜔𝜔𝑐𝑐. 
 

 
Figure 5. Magnitude of critical CROCUS reactor transfer function, when using classical point-kinetics with 

parameters from [16].The frequency range of interest (0.1 Hz – 2.0 Hz) is highlighted in green. 
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Figure 6. With a fixed oscillation amplitude of 1.85 mm, 𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝒙𝒙,𝟓𝟓 for a parametric study with various 𝝎𝝎𝒄𝒄. 

 
3.3. Analysis and reconstruction of COLIBRI movement 
 
In the domain of numerical simulations, the quality of the output results highly depends on the quality of 
the input parameters and in this case it is the oscillation amplitude. The fuel pins oscillate thanks to a 
crankshaft mechanism that moves the top COLIBRI plate, connected to the bottom one by an aluminum 
rod. Since the two plates are not rigidly jointed in the translational movement, some de-synchronization 
due to inertia effects may arise between the two. Moreover, due to the mechanical limitations of the machine, 
the imposed movement is not an ideal sine curve, see Figure 7, but it shows a flattened region on the top 
and bottom boundaries. The spectral analysis of this “almost-sinusoidal” movement, see Figure 8, shows 
higher frequencies, which can be either natural harmonics (𝜔𝜔 = 𝑛𝑛𝜔𝜔𝑐𝑐 ,𝑛𝑛 ∈ ℕ+)  or not, give indeed a 
contribution to the global movement. Therefore, it turns out that a simulation with an ideal sine curve may 
be a rude approximation causing some discrepancies. 
 

 
Figure 7. Time segments of raw top (blue) and bottom (orange) COLIBRI plates signals for experiment #13 

(A = 2.0 mm, ωc = 0.972 Hz). 
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Figure 8. Frequency spectrum of top (blue) and bottom (orange) COLIBRI plates signals for experiment #13 

(A = 2.0 mm, ωc = 0.972 Hz). 

 
To improve the representativeness of the imposed shift, rather than the ideal/monochromatic approximation 
used so far, a reconstructed/polychromatic signal has been build. For conservative reasons [17], the bottom 
plate signal is chosen as reference and so the new displacement has been obtained and by superimposing 
the first 𝑁𝑁𝑘𝑘 = 10 harmonics of the signal Fourier spectrum as: 
 

𝐴𝐴Δ𝑥𝑥(𝑡𝑡) = �𝐴𝐴𝑘𝑘 ⋅ cos(2𝜋𝜋𝑘𝑘𝜔𝜔𝑐𝑐)
𝑁𝑁𝑘𝑘

𝑘𝑘=1

 (6)   

 
where 𝐴𝐴Δ𝑥𝑥(𝑡𝑡) is reconstructed shift of the pins and 𝐴𝐴𝑘𝑘 is the amplitude corresponding to the 𝑘𝑘-th harmonic. 
Then as done for the simulation using the monochromatic displacement, a set of 𝑁𝑁 discrete time equally 
spaced points are identified on the reconstructed signal, see Figure 9, and these are used as reference to 
compute the static flux distributions necessary to the IPK model. 
 

 
Figure 9. Bottom plate reconstructed (blue solid line) and monochromatic (dashed black line) signals for 

experiment #13. Equally spaced discrete points are also reported (red squares). 
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Using the reconstructed COLIBRI signal, the computed results show a good agreement for the computed 
results of the (to pair 6&5) CPSDs amplitudes and phases for experiment #12 and #13, see Figure 10-
Figure 12. From the experimental point of view, the outcomes of EPFL and CEA analyses give consistent 
results. On the computational side, instead, both simulations with the ideal mechanical displacement, return 
slightly lower signal amplitude, possibly due to the sensitivity of the point-kinetics transfer function with 
𝜔𝜔𝑐𝑐 < 2𝐻𝐻𝐻𝐻 [15], see also Paragraph 3.2. The relative phase is within the error bars for experiment #12, with 
except of detector #7 showing an unexpected behavior currently under investigation. For experiment #13 
with the higher frequency of oscillation, the relative phase measures few millisecond and the computed 
results fall mostly inside the error bars or they are outside the uncertainty intervals of few milliseconds. 
 

Figure 10. Comparison of measures and computed CPSDx,5 amplitudes for experiment (a) #12 and (b) #13. 
Results obtained with reconstructed and ideal [5] signal are reported as orange bars and black stars, 

respectively. 

  
Figure 11. Comparison of measures and computed relative (to pair 6&5) CPSDx,5 amplitudes for experiment 
(a) #12 and (b) #13. Results obtained with reconstructed and ideal [5] signal are reported as orange bars and 

black stars, respectively. 
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Figure 12. Comparison of measures and computed relative (to pair 6&5) CPSDx,5 phases for experiment (a) 
#12 and (b) #13. Results obtained with reconstructed and ideal [5] signal are reported as orange bars and 

black stars, respectively. 

 
Concerning the simulation with the reconstructed COLIBRI signal, in principle, this should be a better 
representation of the actual shift. The absolute CPSDs show higher detector responses with respect to the 
case with the monochromatic displacement [5] and the reason behind this difference may lay behind the 
fact that the shapes used in the IPK model are those obtained from the static stimulations and that, differently 
from the traditional approaches [12], these are not updated at the end of the iterations using as correction 
algorithm of the kind presented in [10]. Concerning the phases, no major differences are observed when 
using the monochromatic or reconstructed COLIBRI signal, as the shape update would rather modify its 
normalization, therefore the overall level of the signal, rather than the spatial distribution. 
 

4. CONCLUSIONS 
 
In the present work, the latest advancements in CEA analysis of the first CROCUS noise experimental 
campaign have been presented. The first part presents the methodology set up for the analysis of 
experimental data that gives consistent results with respect to those obtained in previous works. The second 
part presents some parametric and interpretive studies performed with the validated Improved Point-
Kinetics noise model developed by CEA. The first include the analysis of the effects of the frequency of 
oscillation on the noise amplitude, showing that as expected from literature, with increasing frequencies, 
the amplitude of the reactor transfer function decreases. This should mean that the higher the frequency of 
oscillation, the more difficult it would be to detect the flux perturbation. On the other hand, the exercises 
using a reconstructed COLIBRI displacement signal show that higher order harmonics give a not negligible 
to the final amplitude of oscillation and therefore these stress the importance carefully determining the 
simulation input parameters. In conclusion, the present paper proved the accuracy of both CEA 
experimental and computational analysis tools in view of their future applications to industrial cases. 
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Appendix A 
MATLAB scripts for experimental data processing 

 
A.1 Load of experimental data 
 
function [rawe,dt] = loadExp(ntest,daq,DET_ID) 
    disp(['Loading Exp ' num2str(ntest) ' data...']) 
    dt_old = 0; 
    nDet = length(DET_ID); 
    for iDet = 1:nDet 
        try 
            sig0  = load([herefosethepathofthefile]); 
            fprintf('Loaded IsTEC_%.d\r',DET_ID(iDet)); 
 
            dt = sig0(1);     sig0(1) = []; 
            if dt_old ~= dt % Check if the detector have the same sampling time 
                disp(['WARNING:> dt different for det: ' num2str(DET_ID(iDet))]); 
            end 
            dt_old = dt; 
            rawe(:,DET_ID(iDet)) = sig0; 
        end 
    end 
end 

 
A.2 Manipulation of experimental data 
 
clear all 
close all 
clc 
s 
ntest = [2:20];                 % Number of the tests to be analyzed 
daq = 'istec';                  % Name of the DAS used 
 
ARRAY_DET = 3:10;               % Array of selected detectors for the analysis 
nDet = max(ARRAY_DET);          % Number of detectors 
DET_ORDER = [8 6 7 10 3 9 4 5]; % Order of detectors with increasing distance from COLIBRI 
 
refDet = 5;                     % Reference detector for CPSD signal 
jDetRef = 6; 
nBootstrap = 1000;              % Number of bootstrap resampling 
 
lbl = '';                       % Label for the file output name 
 
%           1   2   3   4   5   6   7   8   9   10  11  12  13  14  15  16  17  18  19  20 
freq_nom = [0.0 1.0 1.0 0.5 1.5 2.0 0.1 0.5 1.0 0.1 0.5 0.1 1.0 0.5 0.1 1.0 1.5 2.0 0.1 1.0]; 
omega_fact = [0.8 1.2];         % Frequency lower/upper multiplication factor for maximum search 
 
loadExpAgain = 1;               % Call loadExp function 
disp('Loading static experimental results--------------------------------') 
 
for nn = ntest 
    clear rawn rawe 
    if loadExpAgain == 1 
        [rawe,dt] = loadExp(nn,daq,ARRAY_DET); % Load the data 
        dataR(nn).o = rawe; % Store the raw data into a struct in order to be able to use them 
later 
        Fs = 1/dt; 
        if (nn == ntest(end)) 
            save('dataR.mat','dataR','Fs'); 
        end 
    else 
        if nn == ntest(1) 
            load('dataR.mat'); 
        end 
        rawe = dataR(nn).o; 
    end 
     
    % Normalize the signal 
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    for iDet = ARRAY_DET 
        rawn(:,iDet) = rawe(:,iDet) / mean(rawe(:,iDet)); 
    end 
     
    % Initialize bootsrap variables 
    teta_b = zeros(nDet,nBootstrap); teta2_b = zeros(nDet,nBootstrap); 
    f_b = zeros(nDet,nBootstrap);    f2_b = zeros(nDet,nBootstrap); 
    A_b = zeros(nDet,nBootstrap);    A2_b = zeros(nDet,nBootstrap); 
    Y_b = zeros(nDet,nBootstrap);    Y2_b = zeros(nDet,nBootstrap); 
    auto_b = zeros(nDet,nBootstrap);  auto2_b = zeros(nDet,nBootstrap); 
    autoY_b = zeros(nDet,nBootstrap); autoY2_b = zeros(nDet,nBootstrap); 
 
    for bb = 1:nBootstrap 
        clear sigr 
        for iDet = ARRAY_DET 
            if bb == 1 
                freq_s = freq_nom(nn); 
                period = 1/freq_s; 
                sigr(:,iDet) = rawn(:,iDet); 
            elseif bb > 1 % Resampling only if bootstrap is used 
                freq_s = mean(mean(f_b(DET_ORDER,1:(bb-1)))); 
                period = 1/freq_s; 
                [sigr(:,iDet),dt_new]= myBootstrap(iDet,rawn(:,iDet),period,dt); 
                Fs = 1/dt_new; 
            end 
        end 
        % Reinitialize variables 
        teta_ = zeros(nDet,1);  f_ = zeros(nDet,1);  A_ = zeros(nDet,1);    Y_ = zeros(nDet,1); 
        teta2_ = zeros(nDet,1); f2_ = zeros(nDet,1); A2_ = zeros(nDet,1);   Y2_ = zeros(nDet,1); 
        auto_ = zeros(nDet,1); autoY_ = zeros(nDet,1); auto2_ = zeros(nDet,1); autoY2_ = 
zeros(nDet,1); 
        for iDet = ARRAY_DET 
            %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
            fprintf('Test %d, Resampling %d/%d: doing APSD %d - 
%d.\r',nn,bb,nBootstrap,iDet,iDet); 
            [f,P1PA,~,~,~,~,Y2] = myCPSDlast(sigr(:,iDet),sigr(:,iDet),Fs); % Fourier Transform 
            % Find the APSD peak in the interval around the nominal frequency and the second 
harmonic 
            % First harmonic 
            ind1 = find(abs(f - omega_fact(1)*freq_s) == min(abs(f - omega_fact(1)*freq_s))); 
            ind2 = find(abs(f - omega_fact(2)*freq_s) == min(abs(f - omega_fact(2)*freq_s))); 
            P1_c = P1PA((ind1+1):(ind2-1)); 
            Y2_c = Y2((ind1+1):(ind2-1)); 
            ind_max = find(P1_c == max(P1_c)); 
            auto_(iDet) = P1_c(ind_max); 
            autoY_(iDet) = Y2_c(ind_max); 
             
            % Second harmonic 
            ind1_2 = find(abs(f - omega_fact(1)*2*freq_nom(nn)) == min(abs(f - 
omega_fact(1)*2*freq_nom(nn)))); 
            ind2_2 = find(abs(f - omega_fact(2)*2*freq_nom(nn)) == min(abs(f - 
omega_fact(2)*2*freq_nom(nn)))); 
            P2_c = P1PA((ind1_2+1):(ind2_2-1)); 
            Y2_c = Y2((ind1_2+1):(ind2_2-1)); 
            ind_max_2 = find(P2_c == max(P2_c)); 
            auto2_(iDet) = P2_c(ind_max_2); 
            autoY2_(iDet) = Y2_c(ind_max_2); 
             
            %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
            clear f P1PA ind_max ind_max_2 
            fprintf('Test %d, Resampling %d/%d: doing CPSD %d - 
%d.\r',nn,bb,nBootstrap,refDet,iDet); 
            [f,P1PA,teta,YOUT,PA,~,Y2] = myCPSDlast(sigr(:,iDet),sigr(:,refDet),Fs); 
 
            % First harmonic 
            ind1 = find(abs(f - omega_fact(1)*freq_nom(nn)) == min(abs(f - 
omega_fact(1)*freq_nom(nn)))); 
            ind2 = find(abs(f - omega_fact(2)*freq_nom(nn)) == min(abs(f - 
omega_fact(2)*freq_nom(nn)))); 
            f_c = f((ind1+1):(ind2-1)); 
            P1_c = P1PA((ind1+1):(ind2-1)); 
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            YOUT_c = YOUT((ind1+1):(ind2-1)); 
            teta_c = teta((ind1+1):(ind2-1)); 
            ind_max = find(P1_c == max(P1_c)); 
            if isempty(ind_max) == 0 
                teta_(iDet) = teta_c(ind_max);     
                f_(iDet) = f_c(ind_max); 
                A_(iDet) = P1_c(ind_max); 
                Y_(iDet) = YOUT_c(ind_max); 
            else 
                teta_(nn,iDet) = 0; 
                f_(iDet) = 0; 
                A_(iDet) = 0; 
            end 
 
            % Second harmonic 
            ind1_2 = find(abs(f - omega_fact(1)*2*freq_nom(nn)) == min(abs(f - 
omega_fact(1)*2*freq_nom(nn)))); 
            ind2_2 = find(abs(f - omega_fact(2)*2*freq_nom(nn)) == min(abs(f - 
omega_fact(2)*2*freq_nom(nn)))); 
            f2_c = f((ind1_2+1):(ind2_2-1)); 
            P2_c = P1PA((ind1_2+1):(ind2_2-1)); 
            YOUT2_c = YOUT((ind1_2+1):(ind2_2-1)); 
            teta_c2 = teta((ind1_2+1):(ind2_2-1)); 
            ind_max_2 = find(P2_c == max(P2_c)); 
            if isempty(ind_max_2) == 0 
                teta2_(iDet) = teta_c2(ind_max_2); 
                f2_(iDet) = f2_c(ind_max_2); 
                A2_(iDet) = P2_c(ind_max_2); 
                Y2_(iDet) = YOUT2_c(ind_max_2); 
            else 
                teta2_(iDet) = 0; 
                f2_(iDet) = 0; 
                A2_(iDet) = 0; 
            end 
        end % iDet 
        teta_b(:,bb) = teta_; teta2_b(:,bb) = teta2_; 
        f_b(:,bb) = f_; f2_b(:,bb) = f2_; 
        A_b(:,bb) = A_; A2_b(:,bb) = A2_; 
        Y_b(:,bb) = Y_; Y2_b(:,bb) = Y2_; 
        auto_b(:,bb) = auto_; 
        autoY_b(:,bb) = autoY_; 
        auto2_b(:,bb) = auto2_; 
        autoY2_b(:,bb) = autoY2_; 
    end % bb 
     
    for iDet = ARRAY_DET 
        % Auto-Power Spectal Density 
        CPSD(1).auto(nn,iDet)  = mean(auto_b(iDet,:));   CPSD(1).autostd(nn,iDet)  = 
std(auto_b(iDet,:)); 
        CPSD(1).autoY(nn,iDet) = mean(autoY_b(iDet,:));  CPSD(1).autoYstd(nn,iDet) = 
std(autoY_b(iDet,:)); 
        CPSD(2).auto(nn,iDet)  = mean(auto2_b(iDet,:));  CPSD(2).autostd(nn,iDet)  = 
std(auto2_b(iDet,:)); 
        CPSD(2).autoY(nn,iDet) = mean(autoY2_b(iDet,:)); CPSD(2).autoYstd(nn,iDet) = 
std(autoY2_b(iDet,:)); 
        % First harmonic 
        CPSD(1).t(nn,iDet) = mean(teta_b(iDet,:)); CPSD(1).tstd(nn,iDet) = std(teta_b(iDet,:)); 
        CPSD(1).f(nn,iDet) = mean(f_b(iDet,:));    CPSD(1).fstd(nn,iDet) = std(f_b(iDet,:)); 
        CPSD(1).A(nn,iDet) = mean(A_b(iDet,:));    CPSD(1).Astd(nn,iDet) = std(A_b(iDet,:)); 
        CPSD(1).Y(nn,iDet) = mean(Y_b(iDet,:));    CPSD(1).Ystd(nn,iDet) = std(Y_b(iDet,:)); 
        % Second harmonic 
        CPSD(2).t(nn,iDet) = mean(teta2_b(iDet,:)); CPSD(2).tstd(nn,iDet) = std(teta2_b(iDet,:)); 
        CPSD(2).f(nn,iDet) = mean(f2_b(iDet,:));    CPSD(2).fstd(nn,iDet) = std(f2_b(iDet,:)); 
        CPSD(2).A(nn,iDet) = mean(A2_b(iDet,:));    CPSD(2).Astd(nn,iDet) = std(A2_b(iDet,:)); 
        CPSD(2).Y(nn,iDet) = mean(Y2_b(iDet,:));    CPSD(2).Ystd(nn,iDet) = std(Y2_b(iDet,:)); 
         
    end 
end % nn 
save(['CPSD_' num2str(refDet) '_x' lbl '_b' num2str(nBootstrap) '.mat'],'CPSD'); 
disp('############################ END ############################') 
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A.2 CPSD function 
 
function [f,AMP_CPSD,PHS_CPSD,YOUT,P1,PA,Y_,Y2_conj_] = myCPSDlast(sig1,sig2,Fs) 
    % For sig1 
    Y = fft(sig1);                             % Fourier Transform 
    L = length(sig1);  
    P2 = abs(Y/L); 
    P1 = P2(1:ceil(L/2)+1); 
    P1(2:end-1) = 2*P1(2:end-1);               % Extract amplitude 
    P1 = P1/P1(1); 
    Y_ = Y(1:ceil(L/2)+1)/L; 
    Y_(2:end-1) = 2 * Y_(2:end-1); 
    Y_ = Y_/P1(1); 
    Y = Y/P1(1); 
 
    % For sig2 
    Y2 = fft(sig2);                            % Fourier Transform 
    L2 = length(sig2); 
    Y2_conj = conj(Y2); 
    PB = abs(Y2_conj/L2); 
    PA = PB(1:ceil(L2/2)+1); 
    PA(2:end-1) = 2*PA(2:end-1);               % Extract amplitude 
    PA = PA/PA(1); 
    Y2_conj_ = Y2_conj(1:ceil(L2/2)+1)/L2;     % Similarly to what is done to P1 
    Y2_conj_(2:end-1) = 2 * Y2_conj_(2:end-1); 
    Y2_conj_ = Y2_conj_/PA(1); 
    Y2_conj = Y2_conj/PA(1); 
 
    % Prepare output files 
    f = [Fs*(0:ceil(L/2))/L]';                 % Extract frequency 
    AMP_CPSD = P1.*PA;                         % Extract amplitude 
    PHS_CPSD = angle((Y.*Y2_conj)/L^2);        % Extract phase 
    PHS_CPSD=PHS_CPSD((1:ceil(L/2)+1)); 
 
    % Compute the product of two complew numbers by hand 
    aY = real(Y_); bY = imag(Y_); 
    cY2 = real(Y2_conj_); dY2 = imag(Y2_conj_); 
    p_real = (aY.*cY2 - bY.*dY2); 
    p_imag = (aY.*dY2 + bY.*cY2); 
     
    YOUT = p_real + 1i .* p_imag; 
end 

 
 
A.3 Bootstrap resampling subroutine 
function [sig_out, dt_out] = myBootstrap(iDet,sig_in,period,dt) 
    % The period is not a multiple of dt, so it may happen that the number 
    % of points per period (i.e. period/dt) is not an integer number. 
    % Therefore I have to interpolate sig_in over a time vector with a dt 
    % compatible with the period. 
    mm = length(sig_in);                             % Number of points in the signal 
    time_0 = dt * [0:(mm-1)];                        % Initial time array 
     
    points_per_period = floor(period/dt);            % Set number of points per period  
    period_1 = round(period * 1e4)/1e4;              % Find an 'approximated' oscillation period 
to remove some digits 
    dt_out = period_1/points_per_period;             % Set the chosen sampling time 
    num_av_period = floor(time_0(end)/period_1);     % Find number of available periods 
    time_end = num_av_period*period_1;               % Find final time of interpolating time vector 
    time_1 = [0:dt_out:time_end];                    % Build time array for interpolation 
    sig_ip = interp1(time_0,sig_in,time_1,'linear'); % Interpolate the signal on the time array 
    sig_ip = sig_ip';                                % Transpose the interpolated vector into a 
column vector 
     
    nOffset = 100;                                   % Number of periods to be cut at the beginning 
of the signal 
     
    tot_p = floor(length(sig_ip)/points_per_period); % Total available periods 
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    % Do not consider the first 'nOffset' periods 
    sig = sig_ip([(nOffset*points_per_period+1):(tot_p*points_per_period)]); 
    nn = length(sig);                                % Number of points in the signal 
    n_period_disp = floor(nn/points_per_period);     % Number of available periods 
     
    indBoot = randi(n_period_disp,n_period_disp,1); 
     
    tmp = []; 
    for pp = 1:length(indBoot) 
        bb = indBoot(pp); 
        indPoints = ((bb-1)*points_per_period+1):(bb*points_per_period); 
        tmp = [tmp; sig(indPoints)]; 
    end 
    sig_out = tmp; 
end 
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