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1 Universitat Politècnica de València,
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ABSTRACT

The study of neutron flux fluctuations permits to detect anomalies during the operation
of nuclear reactors. To effectively use this technique for nuclear reactor diagnostics, it is
essential to accurately model the effects of the different types of anomalies on the neu-
tron flux field. This paper deals with the development and validation of a neutron noise
simulator for reactors with any kind of geometry, that is, rectangular and hexagonal ge-
ometries. The neutron noise can be obtained by a frequency-domain or a time-domain
methodology. In this work we compare both methodologies in hexagonal reactors. The
time-domain analysis solves the time-dependent neutron diffusion equation and then per-
forms a Fourier analysis of the obtained time-dependent neutron fluxes and it is usu-
ally used as reference. On the other hand, the frequency-domain methodology solves
the frequency-domain first-order neutron noise equation with complex values. To show
the possibilities of the neutron noise simulator developed a generic absorbers of variable
strength perturbation inside a three-dimensional hexagonal reactor is investigated. Both
methodologies show similar numerical results.
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1. INTRODUCTION

Being able to monitor the state of nuclear reactors while they are running at nominal conditions is
a safety requirement. The early detection of anomalies gives the possibility to take proper actions
before such problems lead to safety concerns or impact in the plant availability. [1]. To be able to
detect, localize and quantify a perturbation in real-time, an automatic algorithm based on machine
learning has to be provided with a large set of simulation data [2].

One useful technique to solve the effect of a perturbation in the neutron noise is to resolve the
frequency-domain first-order neutron noise equation in the diffusion approximation [3]. This equa-
tion must be solved after finding the steady state of the reactor because the static neutron flux for
the different energy groups are variables of this equation. The first order noise equation is derived
by subtracting the static equations the time-dependent ones and considering small fluctuations
compared to the mean values. Finally, a Fourier transform is performed. The frequency-domain
methodology requires to solve a large linear system with complex values. This methodology has
been applied to rectangular [4] [5] and hexagonal reactors [6].
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On the other hand, the time-domain methodology is based in solving the time-dependent neutron
diffusion equation over a perturbed transitory and perform a numerical discrete Fourier transform
to compare the obtained results with the frequency-domain analysis. The main advantage of this
methodology is that it does not imply any approximation. However, this methodology needs to
solve accurately a linear system each time step where the change in the neutron flux is quite small.

Other approximations to the neutron transport equation have been also applied to neutron noise
simulations as Montecarlo calculation [7]. Other works have used deterministic strategies as the
method of characteristic [8] and the SP3 approximation.

This work presents a neutron noise simulator in the frequency domain developed with the finite
element method (FEM), called FEMFFUSION-FD and compares its results with the time-domain
methodology presented in [9] and in [10]. These codes are an extension of the open source neutron
diffusion solver FEMFFUSION [11].

The reset of the manuscript is organizes as follows. Section 2 describes the finite element dis-
cretization of the neutron diffusion equation in its steady state version. Section 3 describes the first
order neutron noise equation in the frequency domain. Then, Section 4 compares numerically the
time-domain an frequency-domain methodologies in a hexagonal reactor. The conclusions of the
work are described in Section 5.

2. FEM DISCRETIZATION OF THE NEUTRON DIFFUSION EQUATION

In the 2-group theory, the time-dependent neutron diffusion equation with one group of delayed
neutrons, where the matrices are denoted by [ ], is defined as [12]

[v−1]
∂φ

∂t
− �∇ ·

(
[D]�∇φ

)
+ [ΣT ]φ = (1− βeff)χ[νΣf ]

Tφ+ λeffχC, (1)

∂C
∂t

= βeff[νΣf ]
TΦ− λeff C, (2)

where the material dependent matrices are defined as

[v−1] =

[ 1
v1

0

0 1
v2

]
, [ΣT ] =

[
Σa1 + Σ12 0
−Σ12 Σa2

]
,

[D] =

[
D1 0
0 D2

]
, [νΣf ] =

[
νΣf1

νΣf2

]
, χ =

[
1
0

]
.

The main unknown of the neutron transport equation is the space- and time dependent neutron flux,
in its usual separation in the fast and thermal energy groups φ =

[
φ1, φ2

]T . All other quantities
have their usual meaning in the nuclear engineering field [12].

2.1. STATIC PROBLEM

For a given transient analysis in a core reactor, as a neutron noise simulation, a static configura-
tion of the reactor is considered as initial condition. Associated with the time dependent neutron
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diffusion equation, (1) and (2), there is the static diffusion equation given by

−�∇ · ([D]�∇φ+ [ΣT ]φ =
1

keff
χ(νΣf )

Tφ. (3)

This is a eigenvalue problem where the fundamental eigenvalue (the largest one) is called the k-
effective of the reactor core, and this eigenvalue and its corresponding eigenfunction describe the
steady state neutron distribution in the core. In this way, the calculation of the stationary neutron
flux distribution is the first step for any neutron noise analysis and other transient analysis.

To solve problem (3), a spatial discretization of the equations has to be selected. In this work, a
high order continuous Galerkin finite element method is used [13]. This discretization leads to an
algebraic eigenvalue problem associated with the discretization of equation (3) with the following
block structure, [

L11 0
−L21 L22

] [
φ̃1

φ̃2

]
=

1

λ

[
M11 M12

0 0

] [
φ̃1

φ̃2

]
, (4)

where φ̃1 and φ̃2 are the algebraic vectors of weights associated with the fast and thermal neutron
fluxes. The matrices elements of the different blocks are given by

[L11]ij =
Ne∑
e=1

(
D1

∫

Ωe

�∇Ni
�∇Nj dV −D1

∫

Γe

Ni
�∇Nj d�S + (Σa1 + Σ12)

∫

Ωe

NiNj dV

)
, (5a)

[L21]ij =
Ne∑
e=1

Σ12

∫

Ωe

NiNj dV, (5b)

[L22]ij =
Ne∑
e=1

(
D2

∫

Ωe

�∇Ni
�∇Nj dV −D2

∫

Γe

Ni
�∇Nj d�S + Σa2

∫

Ωe

NiNj dV

)
, (5c)

[M11]ij =
Ne∑
e=1

νΣf1

∫

Ωe

NiNj dV, (5d)

[M12]ij =
Ne∑
e=1

νΣf2

∫

Ωe

NiNj dV, (5e)

where Ni is the prescribed shape function for the i-th node. For simplicity, the shape func-
tions used are Lagrange polynomials that constitute the Lagrange finite elements [13]. Ωe (e =
1, . . . , Ne) are the reactor subdomains (cells) in which the reactor domain is divided. In the same
way, Γe are the corresponding subdomain surfaces which are part of the reactor frontier. More
details on the spatial discretization used can be found in [14].

To solve the algebraic eigenvalue problem (4) a Krylov-Schur method is used. To accelerate the
computation, the generalized eigenvalue problem is reduced to an ordinary eigenvalue problem of
the form,

L−1
11

(
M11 +M12L

−1
22 L21

)
φ̃1 = λφ̃1 , (6)

which is solved for the dominant eigenvalue (keff) and its corresponding eigenvector. In this way,
for each matrix-vector product it is necessary to solve two linear systems associated with L11

and L22, to avoid the calculation of their inverse matrices. These linear systems are solved by
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means of an iterative scheme as the preconditioned Conjugate Gradient method. Particularly, a
Cuthill-McKee reordering is performed to reduce the bandwidth of the matrices, together with an
incomplete LU factorization is used for the preconditioning. Also, other efficient solvers has been
elaborated as the BIFPAM [9] and Newton iteration solver [15] for the neutron diffusion equation
in its steady state form.

3. FIRST-ORDER NEUTRON NOISE THEORY

The first-order neutron noise theory is based on splitting every time dependent term, expressed
as X(�r, t), into their mean value, X0, which is considered as the steady-state solution, and their
fluctuation around the mean value, δX as

X(�r, t) = X0(�r) + δX(�r, t). (7)

The fluctuations are assumed to be small compared to the mean values. This allows to neglect
second-order terms (δX(�r, t) × δX(�r, t)) = 0. Also, the fluctuations of the diffusion coeffi-
cients are neglected and δDg = 0 is assumed. Thus, the first-order neutron noise equation in the
frequency-domain can be written as [3] [5].

−�∇ ·
(
D�∇δφ(�r, ω)

)
+ [Σdyn] δφ(�r, ω) = δS(�r, ω), (8)

where ω is the frequency variable and �r de position variable. The perturbation source term δS(�r, ω)
is given by the frequency-domain changes in the materials cross sections:

δS(�r, ω) =

[
δS1(�r, ω)
δS2(�r, ω)

]
= [φs] δΣ12 + [φa]

[
δΣa1

δΣa2

]
+

1

keff
[φf ]

[
δνΣf1

δνΣf2

]
, (9)

where

[Σdyn] =

[
Σ1 −νΣf2

(
1− jωβeff

jω+λeff

)

−Σ12 −Σa2 +
jω
v2

]
, [φs] =

[
−φ1

φ1

]
,

[φa] =

[
φ1 0
0 φ2

]
, [φf ] =

(
1− jωβeff

jω + λeff

)[
φ1 φ2

0 0

]
,

Σ1 = Σa +
jω

v1
+ Σ12 − νΣf1

(
1− jωβeff

jω + λeff

)
.

By comparing equation (3), it can be seen that the neutron noise equation is an in-homogeneous
equation with complex quantities that has to be solved after the steady-state solution is obtained
because φ1 and φ2 represent the steady state fast and thermal neutron fluxes, respectively. The re-
lated static eigenvalue problem must be solved with the same spatial discretization as the frequency
domain neutron noise equation to get coherent results.

Applying the continuous Galerkin finite element discretization to Eq. (8) leads to an algebraic
linear system of equation with the following block structure

[
A11 A12

A21 A22

]
δΦ̃ =

[
S1

S2

]
, (10)
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where δΦ̃ =
[
δφ̃1, δφ̃2

]T
are the algebraic vectors of weights associated with the fast and thermal

neutron noise fluxes. The matrices elements of the different blocks are given by

[A11]ij =
Ne∑
e=1

(
D1

∫

Ωe

�∇Ni
�∇Nj dV −D1

∫

Γe

Ni
�∇Nj d�S + [Σdyn]11

∫

Ωe

NiNj dV

)
, (11a)

[A12]ij =
Ne∑
e=1

[Σdyn]12

∫

Ωe

NiNj dV , (11b)

[A21]ij =
Ne∑
e=1

[Σdyn]21

∫

Ωe

NiNj dV , (11c)

[A22]ij =
Ne∑
e=1

(
D2

∫

Ωe

�∇Ni
�∇Nj dV −D2

∫

Γe

Ni
�∇Nj d�S + [Σdyn]22

∫

Ωe

NiNj dV

)
, (11d)

[S1]ij =
Ne∑
e=1

∫

Ωe

δS1(�r, ω)NiNj dV , (11e)

[S2]ij =
Ne∑
e=1

∫

Ωe

δS2(�r, ω)NiNj dV . (11f)

4. NUMERICAL RESULTS

As a case of study, a usual three-dimensional hexagonal VVER-1000 reactor core is considered [6].
This benchmark has a 1/12 reflective symmetry but as the inserted perturbation is not symmetrical,
the whole reactor must be solved. The core is composed of 163 fuel assemblies surrounded by 54
reflector cells. Figure 1 shows the materials layout of the core. The fuel assembly pitch is 23.6
cm and the active height is 355 cm. Therefore, the total height is 426 cm including 35.5 cm thick
reflectors in the upper and the lower part of the core. The reactor is discretized into 24 planes, each
one of 17.75 cm thick.

A generic absorber of variable strength perturbation is inserted in the fuel assembly marked with
a cross (×) in Figure 1 on the plane 12 of 10% of the value of Σa1 and Σa2 cross sections, δΣa1 =
1.06731×10−3 cm−1 and δΣa2 = 8.85869×10−3 cm−1. The cross section data of this benchmark is
shown in Table 1. Kinetic data of this benchmark problem is shown in Table 2. Vacuum boundary
conditions have been considered for this benchmark.

To compare the different solutions computed, we have defined the following error indicators:

∆keff = keff − kref
eff ,

εg = 100× 1

Nc

Nc∑
c=1

φc,g − φref
c,g

φref
c,g

%, g = 1, 2,

ζg = 100× 1

Nc

Nc∑
c=1

|δφc,g| −
∣∣δφref

c,g

∣∣
∣∣δφref

c,g

∣∣ %, g = 1, 2,
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ηg = 100× 1

Nc

Nc∑
c=1

arg(δφc,g)− arg(δφref
c,g)

arg(δφref
c,g)

%, g = 1, 2,

where values with the superscript ref represent reference results extracted with an accurate time-
domain calculation obtained with a refined mesh and a fifth polinomial degree in the finite element
method FED = 5 and ∆t = 10−3 s. φref

c,g and δφref
c,g are the steady-state mean flux and the average

noise flux, respectively, at the hexagonal cell c. Nc is the number of hexagonal cells in the reactor.

Table 3 shows the static results for the VVER-1000 benchmark for different depending on the
polynomial degree used in the FEM shape functions (FED). As we use the same code to cal-
culate the steady-state of the reactor, the steady-state results for the frequency-domain and timer-
domain methodologies are the same. Table 4 compares the time-domain and the frequency-domain
methodologies employed and the FED ranging from 1 to 3. This Table shows that the differences
between the frequency-domain and time-domain methodology using the same FED are small, val-
idating both methodologies. Also, it can be seen that calculations with linear shape functions do
not provide accurate enough results. The FED = 2 and FED = 3 provide accurate results for this
benchmark. Also, it can be observed that the static results show smaller errors that the neutron
noise results with the same discretization. This indicates that finer meshes must be used in noise
simulations to ensure accurate results.

Figure 2 represents the middle plane (z = 177.5 cm) of the static assembly flux values for the
steady state solution using FED = 3. Figure 3 presents the neutron noise magnitude obtained with
FED = 3 and the frequency-domain approach. The results show that the thermal neutron noise is
mostly localized while the fast neutron noise has influence over a wider region. Figure 4 shows the
neutron noise phase results. The phase of the neutron noise is similar throughout the entire reactor.
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Figure 1: Material layout of the VVER-1000 reactor.
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Table 1: Cross section data for VVER-1000 reactor.

Material Group Σtr,g Σag νΣfg Σ12

(1/cm) (1/cm) (1/cm) (1/cm)

1 1 2.48450e–1 1.00950e–2 5.39871e–3 1.11009e–2
2 7.18780e–1 7.04091e–2 9.52272e–2

2 1 2.47824e–1 1.06731e–2 6.66620e–3 1.07324e–2
2 7.30392e–1 8.85869e–2 1.34809e–1

3 1 2.43091e–1 1.11765e–2 8.13314e–3 1.14067e–2
2 7.70401e–1 1.09003e–1 1.78327e–1

4 1 2.32926e–1 9.63601e–3 5.86762e–3 1.42223e–2
2 8.17510e–1 8.41074e–2 1.10340e–1

5 1 2.32849e–1 9.75808e–3 5.86196e–3 1.41352e–2
2 8.21538e–1 8.77763e–2 1.10451e–1

6 1 2.32238e–1 1.04844e–2 7.40621e–3 1.39202e–2
2 8.33502e–1 1.04848e–1 1.52190e–1

R 1 2.07775e–1 4.71403e–4 0.00000e–0 4.19586e–2
2 1.33650e–1 1.20450e–2 0.00000e–0

βeff λeff (s−1) v1 (cm s−1) v2 (cm s−1)

0.0065 0.0767 1.8230e+7 4.1306e+5

Table 2: Kinetic data for the 3D VVER-1000 benchmark problem.

5. CONCLUSIONS

This work presents a neutron noise simulator developed using the finite element method. It can deal
with different kinds of geometry allowing complex domains as hexagonal reactors and any location
and shape of the perturbation. Numerical results compare this frequency-domain simulation with a
time-domain methodology. The small differences shown in the results validate both the frequency-
domain methodology and the time-domain methodology against a generic absorber of variable
strength in a selected location. These codes could permit to train machine learning algorithms to
detect and quantify perturbations in real-time in operating nuclear reactors of any type of geometry.
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Methodology FED DoFs keff ∆keff ε1 ε2
(pcm) (%) (%)

Time- and Frequency-domain 1 35 150 1.026 03 2036 4.60 6.06
Time- and Frequency-domain 2 265 286 1.008 30 263 0.29 0.45
Time- and Frequency-domain 3 877 898 1.005 95 28 0.11 0.15

Table 3: Comparison table for the steady-state problem of 3D VVER-1000 reactor.

Methodology FED ζ1 ζ2 η1 η2

(%) (%) (%) (%)
Frequency-domain 1 10.51 10.58 0.03 0.03
Frequency-domain 2 1.58 1.58 0.04 0.04
Frequency-domain 3 0.42 0.42 0.04 0.04

Time-domain 1 11.63 11.70 0.02 0.02
Time-domain 2 1.23 1.25 0.00 0.00
Time-domain 3 0.19 0.20 0.00 0.00

Table 4: Comparison table for the neutron noise problem of 3D VVER-1000 reactor.
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Figure 2: Static neutron fluxes in the VVER-1000 reactor.
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Figure 3: Magnitude of the noise in the VVER-1000 reactor.
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Figure 4: Phase of the noise in the VVER-1000 reactor.

Development of a Neutron Noise Simulator for Hexagonal Geometries
The CORTEX Project—

Com
bining Reactor M

odelling and M
achine Learning for Core M

onitoring I

ANS M&C 2021    October 3–7, 2021 1899



A. Vidal Ferràndiz, et al.
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