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ABSTRACT

In this work, a methodology is proposed for the classification of different perturbation
types and their position in a nuclear reactor core. More specifically, it is based on a Con-
volutional Neural Network architecture that identifies and locates specific perturbations,
given the spectrograms of detector signals as input. Training samples have been provided
by the SIMULATE-3K code, that simulates reactor core conditions. The different per-
turbation types considered are (i) realistic fuel assembly vibrations at different positions
in the reactor core, (ii) fluctuations of inlet coolant temperature, (iii) fluctuations of inlet
coolant flow and finally, (iv) combinations of the above sources. A complementary ro-
bustness analysis of the proposed architecture was performed to assess its performance in
the cases of noisy or missing data. The trained model has subsequently been utilized on
measurements obtained from the Gösgen Power Plant in Switzerland, for an assessment
of its functionality.

KEYWORDS: neutron noise, anomaly detection, deep learning, convolutional neural networks,
spectrograms, Simulate-3K, core diagnostics

1. INTRODUCTION

As the fleet of deployed Nuclear Power Plants (NPPs) in Europe and worldwide grows older, it
becomes imperative to monitor their core conditions and take preemptive actions to ensure perfor-
mance and safety [1]. One of the prevalent methods used for the assessment of the reactor core
is noise diagnostics, that refer to the fluctuation of neutron flux around a mean value [2]. These
signals are sampled from neutron detectors scarcely placed in the reactor core, and the main di-
agnostic task is to identify and locate the source of driving perturbations in the core based on the
neutron flux captured at the detectors.
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The current work employs machine learning techniques and more specifically, deep learning ap-
proaches, for perturbation identification & localization. Extending earlier work, a Convolutional
Neural Network-based (CNN) architecture is presented, that models realistic perturbation types
and their combinations, produced by the SIMULATE-3K code [3,4]. Section 2 reviews the rele-
vant literature on the subject, while Section 3 describes the simulated data considered in this study.
In Section 4, the proposed system is outlined and in Section 5 the training pipeline & the obtained
results are demonstrated. Finally, the paper concludes in Section 6.

2. RELATED WORK

Machine Learning techniques have been widely applied to NPP data, both on simulated and actual
plant measurements, for the assessment and diagnosis of the core state. Examples include symbolic
dynamic filtering [5], that was used to down-sample input detector signals and then train a clas-
sifier. It has been demonstrated that this methodology performed better than principal component
analysis, for simulated data produced by the International Reactor Innovative & Secure simulator.
Support Vector Machines have also been considered for similar tasks; that is to assess the state of
the reactor core [6] or for outlier identification on neutron flow signals originating from a nuclear
reactor channel [7],

More recently, deep learning techniques have been utilized for noise diagnostics, as for example in
[8], where a hybrid approach based on CNNs and denoising autoencoders, followed by k-means
clustering, was proposed for perturbation identification and localization. Experiments performed
on data generated by the CORE SIM [9] noise simulator exhibited promising results, even in
the presence of (additive) noise to the signals, thereby validating its robustness. Additionally, a
3-dimensional CNN architecture for localizing perturbations has been presented in [10], based
on frequency domain data. The same work also considers time-domain data (generated by the
SIMULATE-3K code) that are provided as input to a Long Short-Term Memory (LSTM) network.

Finally, the wavelet transformation of detector signals is also used in conjunction with CNN archi-
tectures for efficient perturbation classification in [11]. In [12], an ensemble of Neural Networks
has been proposed, consisting of one dimensional convolutions that extract the spatial characteris-
tics of the detrended signals of neutron detectors, followed by LSTM layers that capture temporal
features of the signals. Each neural network has been trained to recognize one specific perturbation
type, with the experimental results demonstrating a satisfactory combined identification accuracy.

3. DESCRIPTION OF SIMULATED DATA

In this work, modeling of various noise sources based on realistic vibrations of fuel assemblies,
fluctuations of thermal-hydraulic parameters of inlet coolant temperature and coolant flow, their
combinations, and simulation of induced neutron noise are performed for the Swiss pre-KONVOI
pressurized water reactor (PWR) [13]. It is a 3-loop reactor comprising of 177 fuel assemblies.
The Paul Scherrer Institute (PSI) neutron noise methodology is based on the CASMO-5 (C5)/
SIMULATE-3 (S3) code system, coupled with the transient nodal code SIMULATE-3K (S3K)
[14,15]. Vibrations of fuel assemblies are modeled with the so-called ‘delta-gap model’ in C5 that
generates perturbed two-group macroscopic cross sections corresponding to varying water gap due
to fuel assembly displacement. Post-processing of C5 nuclear data results in a readable binary-
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formatted cross section library to be used by S3 and S3K for full core calculations. An external
MATLAB script generates an include file containing time-wise delta-gap widths, that allows to
simulate time-dependent fuel assembly vibrations with the “assembly vibration model” in S3K
[16].

Table 1: Description of the transient scenarios along with the perturbation parameters

Case Noise sources
Relative

Mode of Core Vibration Maximum perturbation
vibration condition frequency displacement from initial

conditions

1.
Individual fuel Cantilevered BOC 1.2 Hz 1 mm -

assembly C-shaped BOC 1.2 Hz 1 mm -
vibration S-shaped BOC 5.0 Hz 1 mm -

2.
Inlet coolant - BOC - - ±1oC
temperature - MOC - - ±1oC
fluctuations - EOC - - ±1oC

3.
Inlet coolant - BOC - - ±2%

flow - MOC - - ±2%
fluctuations - EOC - - ±2%

4. Combination-I Simplistic
BOC 1.2 Hz 1 mm ±1oC, ±2%
MOC 1.2 Hz 1 mm ±1oC, ±2%
EOC 1.2 Hz 1 mm ±1oC, ±2%

5. Combination-II Cantilevered
BOC 1.2 Hz 1 mm ±1oC, ±2%
MOC 1.2 Hz 1 mm ±1oC, ±2%
EOC 1.2 Hz 1 mm ±1oC, ±2%

6. Combination-III C-shaped
BOC 1.2 Hz 1 mm ±1oC, ±2%
MOC 1.2 Hz 1 mm ±1oC, ±2%
EOC 1.2 Hz 1 mm ±1oC, ±2%

7. Combination-IV S-shaped
BOC 1.2 Hz 1 mm ±1oC, ±2%
MOC 1.2 Hz 1 mm ±1oC, ±2%
EOC 1.2 Hz 1 mm ±1oC, ±2%

Having undergone improvements, the enhanced S3K version contains a module that enables the
fuel assembly (FA) to vibrate in an axial pattern, representative of the vibration modes, by displac-
ing each of the axial nodes by a certain width that is calculated using the user-assigned coefficients
to each node and the water-gap widths at every time step. Models of in-core and ex-core neutron
detectors are also included in the S3K input. The in-core detector model is composed of 36 detec-
tors in total, distributed at 6 azimuthal locations and at 6 different axial levels. The ex-core detector
model consists of 8 detectors in total, distributed at 4 azimuthal locations and at 2 axial levels. For
a given set of operating conditions, S3K performs full core transient calculation to produce 3-D
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two-group nodal neutron fluxes at each time step.

For the purpose of this study, detector responses obtained at the in-core neutron detector loca-
tions induced due to scenarios based on three main perturbation types and their combinations, are
analyzed. The perturbation types are fuel assembly vibrations that include simplistic mode, can-
tilevered mode, C-shaped and S-shaped modes and inlet coolant flow & temperature fluctuations.
The data is simulated at the Beginning-of-cycle (BOC), Middle-of-cycle (MOC) and End-of-cycle
(EOC) of Cycle 40. The transient scenarios along with the perturbation parameters are given in
Table 1. The simulations are performed for a duration of 100s at a time step of 0.01s.

Note that in case 1, individual fuel assembly vibrations contain 177 scenarios each for every vi-
bration mode, where each fuel assembly in the core is vibrated separately. Cases 4 – 7 repre-
senting combination scenarios contain simulations of central fuel assemblies in 5 × 5 clusters.
All fuel assembly vibrations are performed in a synchronous pure-sinusoidal manner in the x-
direction. All thermal-hydraulic perturbations of inlet coolant temperature and flow are introduced
synchronously in all 3 loops of the PWR.

4. THE PROPOSED ARCHITECTURE

The core diagnostic task can be divided in two sub-tasks; the first one distinguishes the occurring
perturbation type and the second one locates it in the reactor grid.

Figure 1 outlines the building blocks of the proposed neural network architecture for perturbation
identification and localization. The input is a transformed version of the initial detector signals
in the time domain, which are subsequently detrended and normalized. In order to collect more
training examples the initial 100 sec simulations were split in multiple 10 sec windows. Then,
the wavelet transformation of the signals is computed in order to represent them as scaleograms
(the equivalent of the spectrogram of the Fourier transform), thereby obtaining a 2-dimensional
representation of the signal. This encoding is subsequently provided as input to the convolutional
layers of the network in order to extract spatial features that will help the model in the underlying
task.

Example detector signal scaleograms are depicted in Figure 2, where the colorbar designates the
power of a frequency at a specific timestamp, in logarithmic scale. Yellower colors represent
increased power for the specific frequency, which aligns with the fact that the neutron noise signals
have the majority of their power spectrum in low frequency ranges.

For the identification task, 4 different perturbation types are considered, pertaining to the 7 cases
outlined in Table 1. More specifically, the studied perturbation types include 3 different modes
of FA vibrations (Cantilevered, C-shaped & S-shaped) represented as one class and 2 thermal
hydraulic fluctuations (inlet coolant temperature & flow) modeled separately. The last perturbation
type considered is the combined case, where multiple perturbation types (FA vibration, thermal
hydraulic fluctuations) co-occur in the rector grid. The reason for the separate modeling of the
complex scenario was to help the network distinguish between simple perturbation scenarios and
complex ones, in which the responses may be more complicated than a simple combination of
the individual scenarios. Therefore, the binary output vector of the Identification Network (Figure
1) has a length of 4 bits, with ones designating the existence of a specific perturbation and zeros
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Figure 1: Proposed neural network architecture for perturbation identification and
localization

indicating its absence, respectively.

For the localization task, the same architecture has also been employed. There exist 177 different
perturbation sources (equal to the number of distinct fuel assemblies in the reactor core). In order
to create a more general network, instead of modeling each different source as a separate class,
the perturbation locations were encoded to x-y coordinates. The origin has been chosen to be at
the center of the reactor grid. Therefore, the network outputs the point of the most prominent
perturbation source.

Figure 3 displays the CNN architecture of the localization network (the structure of the identifica-
tion network is similar; only the output layer is slightly different). The input (left) is a 44-channel
image (one spectrogram for each in-core & ex-core detector), whose height and width are equal to
the frequencies and the time window used, respectively. The image is subsequently processed and
down-sampled by a number of successive convolutional blocks (in orange color), which actually
perform the feature extraction process. Then, the extracted features are flattened into a vector and
are provided to the fully connected component of the architecture (in purple color), along with an
additional vector that holds information about the position of the detectors in the grid. Finally, the

Deep Learning-Based Anomaly Detection in Nuclear Reactor Cores

The CORTEX Project—
Com

bining Reactor M
odelling and M

achine Learning for Core M
onitoring II

2030� ANS M&C 2021    October 3–7, 2021



Tasakos et. al

5 10 15 20
0

2

4

6

8

10

5 10 15 20
0

2

4

6

8

10

0

50p

100p

150p

0

10n

20n

30n

40n

50n

Time (sec)Time (sec)

F
re

q
u

e
n

cy
 (

H
z)

F
re

q
u

e
n

cy
 (

H
z)

Figure 2: Example spectrogram input to the CNN architecture (the x, y axes represent time
and frequency, respectively)

Figure 3: ResNet architecture for the localization task. Residual connections have been
skipped for visual clarity.

network outputs the location of the vibrating vector (in x, y coordinates). Of course, the structure
and hyper-parameters of the proposed architecture have been specified after thorough experimen-
tation.

Deep Learning-Based Anomaly Detection in Nuclear Reactor Cores
The CORTEX Project—

Com
bining Reactor M

odelling and M
achine Learning for Core M

onitoring II

ANS M&C 2021    October 3–7, 2021� 2031



Deep learning-based anomaly detection in nuclear reactor cores

5. EXPERIMENTAL RESULTS

5.1. Perturbation identification task

Four different perturbation types have been given as input to the proposed model (FA vibration,
inlet temperature & flow fluctuations and combined scenarios). In this task, the different modes of
FA vibration (cantilevered, C-shaped and S-shaped) were treated as instances of the same perturba-
tion type. In order to assess the robustness of the proposed architecture in the presence of external
noise, input signals have been imputed with white noise of varying intensity, as measured by the
signal-to-noise (SNR) ratio. Table 2 summarizes the performance of the identification network in
terms of the F1-score, for varying noise levels.

Table 2: F1-score of the perturbation identification network for varying SNR ratios

Perturbation type SNR=10 SNR=1 SNR=0.1 SNR=0.01

FA vibration 1.00 1.00 0.99 0.17

Inlet temperature fluctuation 1.00 0.99 0.53 0.30

Inlet flow fluctuation 1.00 1.00 0.62 0.09

Cluster vibration & thermohydraulical fluctuation 0.99 0.99 0.66 0.30

The F1-score is the harmonic mean of Precision and Recall and lies in the [0, 1] range (higher
values indicate better performance). Precision measures the ability of the system to correctly
classify perturbations of a given type. It is equal to the ratio of correctly classified perturbations
over all classified perturbations to the given type. Recall, on the other hand, measures the ability
of the system to identify all perturbations belonging to a given type and is defined as the ratio of
correctly classified perturbations to a given type over all perturbations actually belonging to that
type.

The results of Table 2 indicate that the proposed architecture achieves optimal performance in
identifying all perturbation types in the absence of noise (SNR=10) and even when the noise is a
strong as the actual signal (SNR=0.1), thereby validating its robustness. As it is expected, when
the noise becomes more powerful than the detector signal (SNR=0.1 and 0.01) the system’s ability
to distinguish between perturbation types deteriorates, but to a different degree for each of the
examined cased (e.g. it seems to be deteriorating to a greater extend for the inlet temperature &
flow fluctuations than the FA vibrations).

5.2. Localization task

As it has already been discussed, FA vibrations have been further studied, in an effort to identify
the exact location (x, y coordinate) of the FA vibrating in the reactor core. A similar model to the
perturbation identification network presented above has been trained to output the location of the
vibrating FA. The loss function used is the mean square error between the actual and the predicted
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coordinates of the vibrating FA, as it measures how close the predictions to their real counterparts
really are.

Table 3: Prediction accuracy of the localization network

Prediction proximity Proportion of the test set

exact 0.73
1 difference 0.21
> 1 difference 0.06

Table 3 summarizes the prediction accuracy of the localization network. In 73% of all cases,
the system is able to identify the exact vibrating FA. In another 21% of the cases, the system
is able to identify a neighboring FA, while in only 6% of all cases the prediction is not in the
immediate neighborhood of the vibrating FA. From the presented results, it can be deduced that
the localization network is extremely accurate.

5.3. Faulty detectors

A complementary robustness analysis regarding faulty detectors has also been performed on the
proposed system. The purpose of the study is to assess the distinguishing capability of the models,
given partial information about the grid condition. This is especially crucial because the existence
of faulty detectors is not uncommon in NPP operation. In order to emulate this situation in the cur-
rent task, 6 different subsets of either in-core or in-core & ex-core detectors have been considered.
Their location on the grid is depicted in Figure 4, while their combinations are summarized in the
top two rows of Table 4.

Table 4: Prediction accuracy of the localization network for different subsets of functional
detector signals

Functional subsets of detectors

Prediction I1, I2, I5 I1, I2, I5 I3, I4, I6 I3, I4, I6 I1, I3, I4 I1, I3, I4
proximity + ex-core + ex-core + ex-core

exact 0.52 0.58 0.48 0.65 0.43 0.66
1 difference 0.31 0.32 0.32 0.26 0.34 0.22
2 difference 0.11 0.07 0.13 0.07 0.15 0.09
> 2 difference 0.06 0.03 0.07 0.02 0.08 0.03

The prediction accuracy of the subsets of functional detector signals is displayed on Table 4. As
it is expected, the performance of all functional subsets of detectors is inferior when compared to
the case of all working detectors (Table 3). Nevertheless, it can be argued that in most cases, it is
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Figure 4: Position of the detectors on the grid

still possible to either identify the exact vibrating FA or its direct neighborhood with an accuracy
ranging from 60% to 80%. Additionally, the presence of the ex-core detectors in all cases improves
the results, as a higher number of detectors uniformly within and around the core likely helps in
improving diagnostics of the core. Out of those results, two main conclusions may be drawn:
(i) better coverage of the reactor grid leads to better localization accuracy and (ii) the model is
robust enough, even when smaller detector subsets are considered.

5.4. Preliminary comparison with plant measurements

In principle, the first layers of a deep neural network architecture act as feature extractors for the
data the network is trained upon. Therefore, if the simulated data constitute a good representation
of the actual plant measurements, then the feature extraction procedure may be applied to the actual
plant measurements as well, leading to possible perturbation identification and localization in the
operating NPP. Based on this observation, data obtained during BOC 40 of the Gösgen Power
Plant in Switzerland [17] (3-loop pre-KONVOI reactor) have been provided to the system trained
on simulated data.

In order to match plant measurements to simulated signals, a series of pre-processing steps were
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Figure 5: Predictions of the x-y coordinates of perturbations on plant data

necessary. Firstly, re-sampling has been performed in order to mach the measurements’ sampling
rate to the simulated data. Additionally, because the duration of the plant measurements were 50
minutes, while the simulated signals last for 100 seconds, samples of 10 seconds were drawn from
the plant measurements every minute, resulting in a total of 50 data points.

Figure 5 depicts the predictions of the perturbation localization network for FA vibrations. Those
seem to oscillate around the reactor center (x = 0, y = 0 represent the centre of the core, radially),
mainly to the positive direction of the x (1st and 4th quartiles). The mean predicted vibrating FA
is located at (1.5, 0.5), with σx = 0.73, σy = 1.05. These results predominately locate single
vibrating FAs near the center of the core (radially); nevertheless they are not necessarily indicative
of inferior performance of the proposed methodology on plant measurements, because it could also
be possible that this specific perturbation type (single vibrating FA) is not present in the reactor.

6. CONCLUSIONS

A noise diagnostics pipeline for automatic identification and localization of perturbation sources
based on CNNs has been proposed in this work. Initial results exhibit satisfactory distinguishing
capability on simulated data. A complimentary robustness analysis has been performed, exhibiting
the applicability of the proposed architecture to smaller subsets of detectors. The trained model has
been subsequently tested on actual measurements from a NPP in order to draw insights regarding
possible underlying perturbations. Further investigation is necessary to assess its distinguishing
capability on real plant measurements.
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