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Background 
- Unfolding the Reactor Transfer Function



Problem Case
• We aim to unfold reactor transfer function to provide core 

diagnostics.
• Derivation of core perturbation characteristics to classify and locate its 

origin.

• Yet this is challenging due to the limited number of neutron 
detectors in western type reactors.

• We ask, can we use machine learning to successfully approximate the 
reactor transfer function?

• However, to effectively train ML algorithms large quantities of 
data are required.



Data - Acquisition
• We utilise a diffusion-based core simulation tool that is capable of producing 

any theoretically possible driving perturbation whilst being labelled.
• CORE SIM + (A. Mylonakis, P. Vinai, and C. Demaziere.  “CORE SIM+: A flexible diffusion-based solver for neutron noise simulations.” 

Annals of Nuclear Energy, volume 155, p. 108149 (2021).)

• Only a small number of readings are used corresponding to the neutron 
detectors of equivalent plant settings.

• We employ the APSD/CPSD of of simulated neutron detector readings as 
input into our ML network.

• There are 9 different perturbation scenarios, each being simulated for all 
theoretically possible origins =  Terabytes of Data



Data - Perturbation Scenarios 
• Generic “absorber of variable strength”
• Axially travelling perturbations at the velocity of the coolant flow
• Fuel assembly vibrations, for which the lateral movement of fuel 

assemblies is modelled according to the following modes of 
vibrations:  
• The cantilevered beam mode, 
• The simply supported on both sides mode (with its two first harmonics)
• The cantilevered beam and simply supported mode (with its two first 

harmonics).
• Control rod vibrations
• Core barrel vibrations



Previous Work - 3D Densely Connected CNN
• The complexity of the problem and the limited detectors required 

a deep network to adequately parameterise the problem.

• A 3D extension to DenseNet was proposed.

• 98% classification accuracy, 4cm error in 4m3 core volume.

C. Demaziere, A. Mylonakis, P. Vinai, A. Durrant, F. De Sousa Ribeiro, J. Wingate, G. Leontidis,  S. Kollias.  “Neutron Noise-based Anomaly Classification and Localization using Machine Learning.” PHYSOR (2020)
A. Durrant, G. Leontidis, and S. Kollias.  “3D convolutional and recurrent neural networks for reactor perturbation unfolding and anomaly detection.” EPJ Nuclear Sciences & Technologies (2019).



Semantic Segmentation
- Multiple, Simultaneously Occurring Perturbation Classification 
and Localisation



Beyond One Perturbation!
• In reality perturbations rarely occur in isolation, instead they are 

found as multiple perturbations occurring simultaneously.

Therefore we ask?

• Importantly, how can we make an arbitrary number of 
predictions per sample that change between samples?

• How can we develop architectures that are able to effectively 
process sparse data input in an efficient manner?



Network Architecture - Semantic Segmentation
• Semantic segmentation is a methodology for the “linking” of each 

pixel in an input sample to a semantic (class) label.

• Each voxel in the output represents an origin location of a driving 
perturbation, the classification of a voxel represents that a driving 
perturbation of the identified scenarios is present.

• We employ an 3D Fully-Convolutional U-net architecture.



Network Architecture - Voxel-Wise Semantic 
Segmentation



Network Training - Voxel-Wise Semantic 
Segmentation
• Our major challenge lied with class imbalance, we have a large volume 

(34^3 voxels) with only a relatively small number of present 
perturbations.

• Focal loss helps, it gives more weight for “hard-to-classify examples”.

• We train the network to minimise the average categorical focal loss of 
every voxel in the mask to the ground truth (the true source location of 
the simulated perturbation). 

• We also utilise a logarithmic class weighting scheme to the focal loss to 
reduce the impact of perturbation classification imbalance.



Results
• We additively combine a random 

number of individual driving 
perturbation samples within a range 
[1, x]

• We produce 500,000 combined 
samples per set (15, 30, 45) 

• Strong classification of source 
perturbations at their originating 
assemblies.

• The majority of erroneous results 
come from False Positive 
identification, around the location of 
the true perturbation.

Per Class Voxel Prediction Accuracies *

No.

Comb

No.

Det

Accuracy (%)

BG AVS CANT SF SS CSF CSS CR TP BV

15 56 99.08 90.47 92.98 86.49 93.02 97.62 97.22 83.06 94.74 100.00

30 56 99.64 85.97 81.48 90.48 97.37 90.24 95.12 90.21 93.25 100.00

45 56 99.35 82.28 88.00 87.50 89.23 90.00 92.42 88.99 93.20 100.00

15 30 45



Example Prediction Masks

(German pre-KONVOI) (Swiss pre-KONVOI)



How can we Leverage Synthetic and 
Real Plant Measurements?
- Self-Supervised Domain Adaptation
- Synthetic to Real Adaptation



Towards Application to Real Measurement
• Can we just make predictions on the real plant measurements 

from the network trained on simulated data? 

• Real plant data, although modelled by the simulations, contains 
some inherent differences to simulated data, how do we 
minimise these differences as not to confuse our trained network?

• Real plant data is not annotated (unsupervised), how can we 
leverage the annotated simulated data that is abundant and 
provides clear perturbations distinctions?



Unsupervised Domain Adaptation
• We aim to learn a discriminative classifier (our voxel-wise semantic 

segmentation network) for classifying perturbations that is invariant to 
the presence of a domain shift from simulated to real data.

• We have no annotations in the real plant measurements so we need a 
method to align these different domains without semantic information 
rather we need to find common features across domains.

• Therefore, we opt to train our classifier to align the two domains in 
some shared feature space represented by the discriminative model 
through the process of solving a common auxiliary task that are 
constructed from the data itself (self-supervised learning). 



• Auxiliary tasks are constructed from the input, providing feature 
understanding of structurally relevant info whilst not requiring 
annotation. 

• These tasks encourage alignment between the distribution of features 
captured in both the simulated (S) and real measurements (T) domains.

• The feature extractor predict identical augmentations for each input, 
enforcing invariance to the nuances displayed between distributions.

Self-Supervised Domain Adaptation (1)



Auxiliary Tasks
These are simple softmax classification tasks that take as input the 
feature representations from the encoder-decoder network.

• Rotation: Identify degree of rotation ⟶ [0°, 90°, 180°, 270°]

• Flip: Identify axis of flip ⟶ [No Flip, Vertical, Horizontal]

• Missing Detector: Identify the missing detector ⟶ [1, …, 44]

Augmentations are applied identically to both source and target input 
sample and processed simultaneously by the network.



Self-Supervised Domain Adaptation (2)



Results
• Very initial results, as we have 

no assured validation.

• Positively, we identify 
vertically transporting 
phenomena which is also 
identified in signal processing 
analysis.

• Additionally, we observe a 
vertical column of AVS inline 
with this transport 
phenomena. 

German 
4-Loop pre-KONVOI 

Frequency = 0.3 Hz

https://docs.google.com/file/d/1KlteINpeP8yESQTyS14nrEkjrBc9_H6m/preview
https://docs.google.com/file/d/1E14pNBQBC4IK6MlxSfZQ4a2Nw3aEx37A/preview


Results
• The MMD between the synthetic 

and real domains in feature space 
is reduced during training.

• Such convergence shows the 
network is reducing the distance 
between domains in feature space 
empirically showing alignment.

• Our results are further verified by 
other works within the project in 
which an unsupervised approach 
reports similar phenomena.

G. Ioannou, T. Tasakos, A. Mylonakis, G. Alexandridis, C. Demaziere, P. Vinai, and A. Stafylopatis.  “Feature extraction and 
identification techniques for the alignment of perturbation simulations with power plant measurements.”  In International 
Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering (M&C 2021). 2021.)



Conclusions
• We provide a technique to perform the novel task to accurately (in 

the simulated case) classify and subsequently localize many 
simultaneously occurring perturbations via noise diagnostics.

• Our network requires very little additional reactor information to 
make these strong predictions.

• We provide a methodology to leverage both domains of data, 
simulated and real.

• Our model uses structurally relevant information inherent in both 
domains to find common features.

• This approach does not require extra-human annotation yet can use 
the large labelled datasets and align to the nuances of real data to 
get a more accurate result.
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