

Feature Extraction & Identification Techniques for the Alignment of Perturbation Simulations with Power Plant Measurements

George Ioannou¹, Thanos Tasakos¹, Antonios Mylonakis², **Georgios Alexandridis**¹, Christophe Demaziere², Paolo Vinai², Andreas Stafylopatis¹

- 1. National Technical University of Athens, Greece
- 2. Chalmers University of Technology, Sweden

Overview

- We propose a methodology for the comparison of measured and simulated neutron noise signals in nuclear power plants
- The key components of the proposed methodology are:
 - 1. Auto-Power Spectral Density of plant measurements in order to identify possible perturbation frequencies
 - 2. Cross-Power Spectral Density between plant measurements and simulated data in order to identify possible perturbations
- Reactor core used in this study is a German 4-loop pre-KONVOI Pressurized Water Reactor

Neutron Noise Signals: Simulated Data

- Frequency-domain simulations using the CORE SIM+ tool
- Anomalies/perturbations considered
 - 1. Axially traveling perturbations at the velocity of the coolant flow
 - 2. Fuel assembly vibrations
 - Cantilevered beam mode, simply supported on both sides mode and both
 - All possible locations of the vibrating fuel assembly have been modelled
 - 3. Core barrel vibrations (beam & pendular modes)
 - 4. Generic "Absorber of variable strength"
 - Spatial Dirac-like perturbation

Neutron Noise Signals: Plant measurements

- German 4-loop pre-KONVOI Pressurized Water Reactor
- Detector Types
 - in-core (L), thermal (T), ex-core (X), pressure sensors (P)
- Only neutron noise sensors have been considered in this study
 - 53 sensors in total (45 L & 8X) as some were known to exhibit faulty behavior

Plant measurement signal preprocessing

- Signal
 - length: 30 minutes
 - Sampling rate: 250Hz
 - 450,560 discrete time samples
- Preprocessing steps
 - 1. Remove the DC component
 - 2. Remove trend, if present

Auto-Power Spectral Density of plant measurement signals

Comparison pipeline

Results: Axially Traveling Perturbations

Results: Fuel Assembly Vibrations (cantilevered beam mode)

Results: Absorber of Variable Strength (axial level 9)

Thank you! Any questions?

