
CORTEX
Research and Innovation Action (RIA)

This project has received funding from the European
Union's Horizon 2020 research and innovation programme

under grant agreement No 754316.

Start date : 2017-09-01 Duration : 48 Months
http://cortex-h2020.eu

Development and comparison of highorder solvers for reactor noise analysis

Authors : Mr. Paolo VINAI (Chalmers), Alberto BRIGHENTI (CEA), Christophe DEMAZIÈRE (Chalmers), Baptiste GASSE
(CEA), Damián GINESTAR (UPV), Antonios MYLONAKIS (Chalmers), Amélie ROUCHON (CEA), Simone SANTANDREA

(CEA), Andreas TATIDIS (Chalmers), Antoni VIDAL-FERRÀNDIZ (UPV), Gumersindo VERDÚ (UPV), Toshihiro YAMAMOTO
(KyotoU), Huaiqian YI (Chalmers), Igor ZMIJAREVIC (CEA), Andrea ZOIA (CEA)

CORTEX - D1.4 - Issued on 2021-08-09 16:12:58 by Chalmers



CORTEX - D1.4 - Issued on 2021-08-09 16:12:58 by Chalmers

CORTEX - Contract Number: 754316

Project officer: Marco Carbini

Document title Development and comparison of highorder solvers for reactor noise analysis

Author(s)

Mr. Paolo VINAI, Alberto BRIGHENTI (CEA), Christophe DEMAZIÈRE (Chalmers), Baptiste
GASSE (CEA), Damián GINESTAR (UPV), Antonios MYLONAKIS (Chalmers), Amélie
ROUCHON (CEA), Simone SANTANDREA (CEA), Andreas TATIDIS (Chalmers), Antoni
VIDAL-FERRÀNDIZ (UPV), Gumersindo VERDÚ (UPV), Toshihiro YAMAMOTO (KyotoU),
Huaiqian YI (Chalmers), Igor ZMIJAREVIC (CEA), Andrea ZOIA (CEA)

Number of pages 38

Document type Deliverable

Work Package WP01

Document number D1.4

Issued by Chalmers

Date of completion 2021-08-09 16:12:58

Dissemination level Public

Summary

In the CORTEX project, solvers and procedures based on Monte Carlo and on deterministic higher-order transport methods
are developed and compared for neutron noise simulations. These computational tools allow a more accurate modeling of the
system response to small, stationary perturbations. Therefore, they produce more detailed simulations that can be used for a
better understanding of neutron noise problems and for the investigation of limitations of less accurate approximations such as
neutron diffusion theory.

Approval

Date By

2021-08-09 16:15:02 Mr. Paolo VINAI (Chalmers)

2021-08-10 08:02:47 Pr. Christophe DEMAZIERE (Chalmers)

CORTEX - D1.4 - Issued on 2021-08-09 16:12:58 by Chalmers



This project has received funding from the Euratom research and training programme 2014-2018 under the grant 

agreement no.754316. The content in this report reflects only the views of the authors. The European Commission 
is not responsible for any use that may be made of the information it contains. 

Table of Contents  

1 Introduction ................................................................................................................. 4 

2 NOISE-SN ..................................................................................................................... 4 
2.1 Governing equations ...................................................................................................... 4 
2.2 Discretization of the equations ...................................................................................... 5 
2.3 CMFD acceleration.......................................................................................................... 6 
2.4 Fictitious source method ............................................................................................... 7 

3 APOLLO3® neutron noise solver in the frequency domain .................................... 7 
3.1 The noise equation ......................................................................................................... 7 
3.2 Basic features of the noise solver in IDT ...................................................................... 8 

4 APOLLO3®-IPK neutron noise solver in the time domain ....................................... 8 
4.1 Static simulations ........................................................................................................... 8 
4.2 The Improved Point-Kinetics – IPK noise model .......................................................... 9 

5 A procedure for neutron noise calculations using a stochastic code .................. 10 
5.1 Governing equations .................................................................................................... 11 
5.2 Monte Carlo-based method .......................................................................................... 12 

6 TRIPOLI-4® neutron noise solver ............................................................................ 13 
6.1 Overall computational strategy.................................................................................... 14 
6.2 Sampling the noise source .......................................................................................... 15 
6.3 Solving the linearized noise equations ....................................................................... 20 
6.4 Verification of the TRIPOLI-4® noise solver ............................................................... 22 

7 KU Monte Carlo neutron noise solver ..................................................................... 23 
7.1 Neutron noise equation ................................................................................................ 23 
7.2 Monte Carlo solution algorithm ................................................................................... 24 

8 Comparisons of neutron noise solvers ................................................................... 25 
8.1 Comparison between TRIPOLI-4® and APOLLO3® ..................................................... 25 
8.2 Comparison between NOISE-SN and CORE SIM ........................................................ 28 
8.3 Comparison of the Chalmers Monte Carlo-based method with CORE SIM .............. 32 
8.4 Comparison between neutron noise solvers using numerical benchmarks in a 2-D 
simplified UOX fuel assembly ................................................................................................ 33 

9 Conclusions ............................................................................................................... 36 

10 References .............................................................................................................. 37 

 

Index of Tables 
Table 1: Multiplication factor, comparison between solvers over the static configuration. .............. 34 

  

Table of Figures 
Figure 1: Computational mesh of the unperturbed CROCUS reactor and its detectors. The center 

XY of the coordinate reference system is also indicated. ......................................................... 9 

Figure 2: Overall computational scheme used in TRIPOLI-4®. ..................................................... 15 

Figure 3: The spatial shape of the noise source. Comparison between the exact representation used 
in TRIPOLI-4® (plotted as solid line) and the 𝜀/𝑑 approximation (plotted as a dashed line, using 
the nascent functions to represent the singular spatial behavior located at the interface), see 
details in [32]. Left: the imaginary part of the component at 𝜔0; right: the real part of the 
component at 2𝜔0  ................................................................................................................. 18 

Figure 4: Modulus and phase of the neutron noise versus frequency in an infinite homogeneous 
medium (single-speed transport). ........................................................................................... 22 



D1.4 – Dev. and compar. of high-order solvers for reactor noise analysis 

GA n°754316 Page 2 of 38 

Figure 5: Modulus and phase of the neutron noise versus energy at 3 Hz in an infinite homogeneous 
medium (continuous-energy transport). .................................................................................. 23 

Figure 6: Modulus and phase of the neutron noise versus position at 1 Hz in a one-dimensional 
homogeneous core surrounded by a reflector. ....................................................................... 23 

Figure 7: Simplified UOX fuel assembly: 2D geometry with spatial meshes. The perturbed fuel pin is 
marked in black. ..................................................................................................................... 26 

Figure 8: Steady-state flux of the reference case (scalar flux, TRIPOLI-4® results with 𝜎 < 0.3%).
 .............................................................................................................................................. 26 

Figure 9: Results and relative errors (%) between TRIPOLI-4® and APOLLO3® on the modulus of 

the noise field  induced by a simple isotropic noise source at  = 3 Hz. ............................. 27 

Figure 10: Results and relative errors (%) between TRIPOLI-4® and APOLLO3® on the modulus of 

the noise field  induced by an oscillation noise source at  = 1 Hz. ................................... 28 

Figure 11: C3 configuration and location of the neutron noise source (in red). .............................. 29 

Figure 12: Relative differences between the 2 solvers at the location of the neutron noise source, for 
the amplitude of the fast (left) and thermal (right) neutron noise. ............................................ 30 

Figure 13: Relative differences between the 2 solvers at the location (17,18), for the amplitude of the 
fast (left) and thermal (right) neutron noise............................................................................. 30 

Figure 14: Relative differences between the 2 solvers at the location (25,10), for the amplitude of the 
fast (left) and thermal (right) neutron noise............................................................................. 31 

Figure 15: Relative differences between the 2 solvers at the location (31,4), for the amplitude of the 
fast (left) and thermal (right) neutron noise............................................................................. 31 

Figure 16: Relative differences between the 2 solvers at the location of the neutron noise source, for 
the phase of the fast (left) and thermal (right) neutron noise. ................................................. 31 

Figure 17: Relative differences between the 2 solvers at the location (17,18), for the phase of the 
fast (left) and thermal (right) neutron noise............................................................................. 32 

Figure 18: Results for the homogeneous test case. All results were normalized to the same induced 
neutron noise in the fast energy group at the location of the noise source. ............................ 32 

Figure 19: Results for the heterogeneous test case. All results were normalized to the same induced 
neutron noise in the fast energy group at the location of the noise source. ............................ 33 

Figure 20: Thermal static flux (left) and relative differences with respect to TRIPOLI-4® (right), along 
the main diagonal of the fuel assembly crossing the perturbed fuel pin. ................................. 34 

Figure 21: Exercise 1; relative thermal noise amplitude (left) and relative differences with respect to 
TRIPOLI-4® (right), along the main diagonal of the fuel assembly crossing the perturbed fuel 
pin. ......................................................................................................................................... 35 

Figure 22: Exercise 2; relative thermal noise amplitude (left) and relative differences with respect to 
TRIPOLI-4® (right), along the main diagonal of the fuel assembly crossing the perturbed fuel 
pin. ......................................................................................................................................... 35 

Figure 23: Exercise 2; thermal noise phase (left) and relative differences with respect to TRIPOLI-
4® (right), along the main diagonal of the fuel assembly crossing the perturbed fuel pin. ...... 36 

 

  



D1.4 – Dev. and compar. of high-order solvers for reactor noise analysis 

GA n°754316 Page 3 of 38 

Abbreviations 
 

adCMFD Artificially Diffusive Coarse Mesh Finite Difference 

APSD Auto Power Spectral Density  

CEA The French Alternative Energies and Atomic Energy Commission 

CMFD Coarse Mesh Finite Difference 

CORTEX Core monitoring techniques and experimental validation and demonstration 

CPSD Cross Power Spectral Density 

IDT Integral-Differential Transport 

IPK Improved Point-Kinetics 

KU Kyoto University 

MOSC Method of Short Characteristics 

TDT Two/Three Dimensional Transport 

Summary 
In the CORTEX project, solvers and procedures based on Monte Carlo and on deterministic higher-
order transport methods are developed and compared for neutron noise simulations. These 
computational tools allow a more accurate modeling of the system response to small, stationary 
perturbations. Therefore, they produce more detailed simulations that can be used for a better 
understanding of neutron noise problems and for the investigation of limitations of less accurate 
approximations such as neutron diffusion theory. 
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1 Introduction 

During normal, steady-state operations of a nuclear reactor, neutron flux measurements are 
characterized by small fluctuations around mean values. These fluctuations are referred to as 
neutron noise, and they may be driven by a variety of perturbations, such as mechanical vibrations 
of core internals, disturbances in the coolant flow, etc. 

In the CORTEX project [1], core monitoring and diagnostics techniques are developed to identify 
anomalous patterns in a nuclear reactor from the analysis of the neutron noise, so that appropriate 
actions can be taken at an early stage and prevent potentially dangerous situations from escalating. 
For this purpose, a crucial task is to model the reactor transfer function, which describes the core 
response to a possible perturbation. Knowing the reactor transfer function allows to retrieve 
information about the perturbations from the neutron flux measurements via an inversion algorithm, 
which can be based on advanced signal processing techniques or machine learning, see, e.g., [2-
4].  

The reactor transfer function is modelled using the neutron transport equation, while the possible 
perturbations are expressed in terms of changes in the macroscopic nuclear cross sections. As 
discussed in [5], a coarser estimation of the reactor transfer function may be sufficient for core 
monitoring and diagnostics, and most of the work in the field of reactor neutron noise relies on 
neutron diffusion theory, see, e.g., [6-7]. However, recent efforts also focused on the development 
of stochastic methods and higher-order deterministic methods to perform more detailed analyses 
and assess the limitations of the diffusion approximation for neutron noise applications. 

Work on the modelling of the reactor transfer function using stochastic and higher-order deterministic 
methods has been carried out in task 1.3 of the CORTEX project and is reported in the current 
document. It includes the development, consolidation and study of different solvers and procedures, 
i.e., the discrete ordinates solver NOISE-SN (section 2), the frequency-domain APOLLO3® IDT 
solvers (section 3), the time-domain APOLLO3® IPK solver (section 4), a Monte Carlo-based 
procedure for neutron noise calculations (section 5), the frequency-domain solver in the stochastic 
code TRIPOLI-4® (section 6), and a stochastic neutron noise solver developed by Kyoto University 
(section 7). Results obtained from the comparison between these solvers and from the comparison 
with diffusion approximations are discussed in section 8. Conclusions are drawn in section 9. 

2 NOISE-SN 

The solver NOISE-SN is based on the transport neutron noise equation in the frequency domain. 
The discretization of the equations is performed according to a finite difference, discrete ordinates, 
multi-energy group method. The algorithm for the numerical solution is accelerated using the CMFD 
method. The solver allows to simulate 2-D and 3-D systems with reflective and vacuum boundary 
conditions. For the mitigation of possible ray effects in 2-D problems, the equations are modified with 
a fictitious source term. A detailed description of the solver and its application can be found, e.g., in 
[8-10]. 

2.1 Governing equations 

In the case of a nuclear reactor, the multi-energy-group time-dependent neutron transport equation 
with a generic number of families of delayed-neutron precursors is written as: 

[
1

𝑣𝑔(𝒓)

𝜕

𝜕𝑡
+ 𝜴 ∙ 𝛻 + 𝛴𝑡,𝑔(𝒓, 𝑡)] 𝜓𝑔(𝒓, 𝜴, 𝑡) = ∫ ∑ 𝛴𝑠,𝑔′→𝑔(𝒓, 𝜴′ → 𝜴, 𝑡)𝜓𝑔′(𝒓, 𝜴′, 𝑡)

𝑔′

𝑑𝜴′
4𝜋

 

+
1

𝑘𝑒𝑓𝑓
[𝜒𝑝,𝑔(𝐫) (1 − ∑ 𝛽𝑞(𝐫)

𝑞

) ∑ 𝜈𝛴𝑓,𝑔′(𝐫, 𝑡)𝜙𝑔′(𝐫, 𝑡)

𝑔′

+ ∑ 𝜒𝑑,𝑞,𝑔(𝐫)𝜆𝑞𝐶𝑞(𝐫, 𝑡)

𝑞

] (1) 
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𝜕𝐶𝑞(𝒓, 𝑡)

∂𝑡
= 𝛽𝑞(𝒓) ∑ 𝜈𝛴𝑓,𝑔′(𝐫, 𝑡)𝜙𝑔′(𝒓, 𝑡)

g′

− 𝜆𝑞𝐶𝑞(𝒓, 𝑡) (2) 

where 𝜓 is the angular neutron flux, ϕ is the scalar neutron flux and 𝐶 is the concentration of delayed-

neutron precursors. The subscripts 𝑔 and 𝑔′ = 1, … , 𝐺 identify the energy groups and 𝑞 = 1, … , 𝑄 the 
families of precursors of delayed neutrons. 

For steady-state conditions, the time derivatives in Eqs. (1) and (2) are zero and the static neutron 
flux 𝜓𝑔,0(𝒓, 𝜴) satisfies the equation: 

[𝜴 ∙ 𝛻 + 𝛴𝑡,𝑔,0(𝒓)]𝜓𝑔,0(𝒓, 𝜴) = ∫ ∑ 𝛴𝑠,𝑔′→𝑔,0(𝒓, 𝜴′ → 𝜴)

𝑔′

𝜓𝑔′,0(𝒓, 𝜴′)𝑑𝜴′
4𝜋

 

+
1

keff
[χp,g(𝒓) ∑ (1 − βq(𝒓))

q

+ ∑ βq(𝒓)

q

] ∑ νΣf,g′,0(𝒓, t)ϕg′,0(𝒓, t)

g′

(3) 

The neutron noise equation in the frequency domain used for NOISE-SN is derived in the case that 
linear theory is valid. Small, stationary perturbations of the macroscopic nuclear cross sections are 
assumed to be induced by a possible disturbance in the reactor. The other system parameters, 
including keff, are considered constant with respect to time. In the time-dependent equations, the 
neutron flux, the concentration of precursors and the nuclear cross sections are modelled as the 
sum of a static mean value and a fluctuating part. The static Eq. (3) is subtracted from Eqs. (1)-(2), 
the second-order perturbation terms are neglected, and a temporal Fourier transform is performed.  
Then, the neutron noise equation in the frequency domain reads as: 

[𝜴 ∙ 𝛻 + 𝛴𝑡,𝑔,0(𝒓) +
𝑖𝜔

𝑣𝑔(𝒓)
] 𝛿𝜓𝑔(𝒓, 𝜴, 𝜔) = ∫ ∑ 𝛴𝑠,𝑔′→𝑔,0(𝒓, 𝜴′ → 𝜴)

𝑔′

δ𝜓𝑔′(𝒓, 𝜴′, 𝜔)𝑑𝜴′
4𝜋

 

+
1

keff
[χp,g(𝒓) ∑ (1 − βq(𝒓))

q

+ ∑ χd,q,g(𝒓)
λqβq(𝒓)

𝑖𝜔 + λq
q

] ∑ νΣf,g′,0(𝒓)δϕg′(𝒓, 𝜔) + Sg(𝒓, 𝜴, 𝜔)

g′

(4) 

The quantities 𝛿𝜓𝑔 and δϕg are the induced angular and scalar neutron noise, respectively, and 

take complex values. The variable 𝜔 = 2𝜋f is the angular frequency of the driving perturbation. The 

imaginary unit is denoted as 𝑖. The term Sg(𝒓, 𝜴, 𝜔) in Eq. (4) is the neutron noise source, i.e.: 

Sg(𝒓, 𝜴, 𝜔) = −δ𝛴𝑡,𝑔(𝒓, 𝜔)𝜓𝑔,0(𝒓, 𝜴) + ∫ ∑ δ𝛴𝑠,𝑔′→𝑔(𝒓, 𝜴′ → 𝜴, 𝜔)

𝑔′

𝜓𝑔′,0(𝒓, 𝜴′)𝑑𝜴′
4𝜋

 

+
1

keff
[χp,g(𝒓) ∑ (1 − βq(𝒓))

q

+ ∑ χd,q,g(𝒓)
λqβq(𝒓)

𝑖𝜔 + λq
q

] ∑ νδΣf,g′(𝒓, 𝜔)ϕg′,0(𝒓)

g′

(5) 

The quantity δ𝛴 is the perturbation associated with the generic nuclear cross section 𝛴. 

Equations (4)-(5) correspond to a fixed source problem whose solution requires the effective 
multiplication factor keff and the neutron fluxes calculated under static conditions. Therefore, NOISE-
SN consists of a static module and a module for the neutron noise simulations in the frequency 
domain. 

2.2 Discretization of the equations 

The static module in NOISE-SN solves the criticality problem given by Eq. (3). The discretization of 
the equation is based on a standard discrete ordinates method [11]. The angular flux is evaluated 
along discrete directions, and the scalar flux is constructed from the angular flux via the Legendre-
Chebyshev quadrature set [12]. The spatial differencing relies on the diamond finite difference 
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method. Possible negative values of the neutron flux are corrected using the set-to-zero fixup. The 
neutron scattering term is approximated by an 𝐿-order real spherical harmonics expansion [13]. 

The frequency-domain neutron noise module calculates the complex-valued neutron noise induced 
by a neutron noise source prescribed in terms of nuclear cross-section fluctuations. The 
discretization of Eqs. (4)-(5) is similar to the static case. A set of discrete directions is selected, where 

the 𝑛-th discrete direction 𝜴𝒏 is defined by the direction cosines μn, ηn and ξn with respect to the 

orthogonal spatial coordinates (𝑥, 𝑦, 𝑧). The equation is spatially discretized using the diamond finite 
difference method over a grid of rectangular cuboids. The centers of the grid cells are identified by 
triples of integer mesh indices (𝐼, 𝐽, 𝐾) associated with the coordinates (𝑥, 𝑦, 𝑧). The faces of the cells 
are given by triples where one half is added to or subtracted from the integer mesh index related to 
the direction perpendicular to the cell face. The volumes of the cells are 𝑉𝐼,𝐽,𝐾 = ∆𝑥𝐼 × ∆𝑦𝐽 × ∆𝑧𝐾. 

Then, the discretized forms of Eqs. (4)-(5) read as: 

μn

∆xI
[𝛿𝜓𝑔,𝑛,𝐼+1/2,𝐽,𝐾(𝜔) − 𝛿𝜓𝑔,𝑛,𝐼−1/2,𝐽,𝐾(𝜔)] +

ηn

∆yJ
[𝛿𝜓𝑔,𝑛,𝐼,𝐽+1/2,𝐾(𝜔) − 𝛿𝜓𝑔,𝑛,𝐼,𝐽−1/2,𝐾(𝜔)]  

              +
ξn

∆zK
[𝛿𝜓𝑔,𝑛,𝐼,𝐽,𝐾+1/2(𝜔) − 𝛿𝜓𝑔,𝑛,𝐼,𝐽,𝐾−1/2(𝜔)] + [𝛴𝑡,𝑔,0,𝐼,𝐽,𝐾 +

𝑖𝜔

𝑣𝑔,𝐼,𝐽,𝐾
] 𝛿𝜓𝑔,𝑛,𝐼,𝐽,𝐾(𝜔) 

                              = ∑ ∑(2𝑙 + 1)𝛴𝑠𝑙,𝑔′→𝑔,0,𝐼,𝐽,𝐾 ∑ 𝑅𝑙
𝑚(𝜴𝒏)δ𝜙𝑙,𝑔′,𝐼,𝐽,𝐾

𝑚 (𝜔)

𝑙

𝑚=−𝑙

𝐿

𝑙=0𝑔′

 

+
1

keff
χg,I,J,K

dyn
∑ νΣf,g′,0,I,J,Kδϕg′,I,J,K(ω)

g′

+ Sg,n,I,J,K(𝜔) (6) 

and 

Sg,n,I,J,K(𝜔) = −δΣ𝑡,𝑔,I,J,K(𝜔)𝜓𝑔,𝑛,I,J,K,0 + ∑ ∑(2𝑙 + 1)δ𝛴𝑠𝑙,𝑔′→𝑔,𝐼,𝐽,𝐾(𝜔) ∑ 𝑅𝑙
𝑚(𝜴𝒏)𝜙𝑙,𝑔′,𝐼,𝐽,𝐾,0

𝑚

𝑙

𝑚=−𝑙

𝐿

𝑙=0𝑔′

 

+
1

keff
χg,I,J,K

dyn
∑ νδΣf,g′,I,J,K(ω)ϕl=0,g′,I,J,K,0

m=0

g′

 (7) 

In Eq. (6), the unknown is the angular neutron noise 𝛿𝜓𝑛. For the closure of Eqs. (6)-(7), the diamond 
finite-difference relationships between the values at the centers and at the faces of a cell are used. 
In addition, the moments of the neutron noise δ𝜙𝑙,𝑔,𝐼,𝐽,𝐾

𝑚  are obtained from the angular neutron noise 

with a quadrature formula. The expression of the noise source in Eq. (7) needs the static angular 
flux 𝜓𝑔,𝑛,𝐼,𝐽,𝐾,0, the flux moments 𝜙𝑙,𝑔,𝐼,𝐽,𝐾,0

𝑚  and the effective multiplication keff, which are provided via 

the static module. 

2.3 CMFD acceleration 

A typical inner-outer iterative procedure is used for NOISE-SN to solve the static multi-energy-group 
neutron transport equations and the neutron noise equations. In an inner iteration, a transport sweep 
with respect to the discrete angular directions is performed to estimate the neutron fluxes for one 
energy group and construct the with-in group self-scattering term. After the inner iterations are 
completed from the highest to the lowest energy group, the neutron fluxes are used to evaluate the 
down-scattering term. Then, the fission source is updated in the outer iteration and a new set of inner 
iterations starts. The procedure is repeated until a convergence criterion is met. 

When solving the neutron transport equation with an inner-outer iteration scheme, acceleration 
techniques are needed to improve the slow numerical convergence. The criticality calculations in the 
static module of NOISE-SN rely on a standard adCMFD acceleration method [14]. A similar algorithm 
is followed for the CMFD acceleration of the neutron noise calculations in the frequency domain. 
Details are discussed in [10].  
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2.4 Fictitious source method 

In NOISE-SN, a fictitious source method can be used for the mitigation of the ray effects in 2-

dimensional simulations. Accordingly, an additional, fictitious source term 𝛾𝑆𝑔,𝑛,𝐼,𝐽
𝐹𝑖𝑐𝑡 (𝜔), which 

preserves the rotational invariance characteristic of the transport equation and converts the discrete 
ordinates equation to a spherical-harmonics-like equation [9], is added to the right-hand side of the 
2-dimensional version of Eq. (6). The model of the fictitious source developed by Lathrop [15] is 
chosen and is coded following the algorithmic procedure described by Miller and Reed [16]. The 
factor 𝛾 can take values between 0 and 1 and allows to tune the strength of the fictitious source. If 
𝛾 = 0, the original discrete ordinate equation is solved. If 𝛾 = 1, the mitigation of ray effects is 
expected to be maximum, but the convergence rate may worsen significantly. Details are reported 
in [10]. 

3 APOLLO3® neutron noise solver in the frequency domain 

A neutron noise solver was developed in the IDT (Integral-Differential Transport) module of 
APOLLO3® deterministic code, developed at CEA, during the PhD thesis of A. Rouchon, before the 
beginning of the CORTEX project [17]. IDT is a lattice solver based on the Sn discrete ordinates 
method and on the method of short characteristics (MOSC). Since this solver has been often used 
in the project for verification and code-to-code comparison purposes (as detailed in Section 8), its 
main features are recalled in the following. A thorough description of the noise solver in IDT is 
provided in [17-18]. This solution scheme has also been implemented in a 2-D nodal diffusion solver 
of APOLLO3® based on the classical Nodal Expansion Method [18], but this implementation is not 
discussed here. 

3.1 The noise equation 

The equations solved by IDT are the linearized noise equations for the complex noise field  in the 
frequency domain, namely 

   (8) 

 

starting from a given noise source 𝑆. The discussion concerning the origin of this equation and the 
different operators appearing thereby is deferred to Section 6, in the context of the TRIPOLI-4® noise 

solver. The quantity  represents the angular frequency. Notation is standard, and  

                                               (9) 

is a shorthand for a frequency-dependent modified delayed neutron multiplicity. In IDT, the noise 

equation is split into a system of two equations for the real and imaginary part of the noise field . 
The two equations are formally coupled by two terms: the imaginary 1/𝑣 absorption cross section 
appearing at the left-hand side, and the modified delayed production operator including the complex 
multiplicity. 

The noise source 𝑆 is defined by: 
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 (10) 

which depends on the model-specific functional forms of the Fourier-transformed perturbed cross 

sections  and on the stationary critical flux 0. The noise equation and the source are dealt with in 
the framework of a multi-group transport description. 

3.2 Basic features of the noise solver in IDT 

In order to solve the frequency domain linearized noise equation with the deterministic code 
APOLLO3®, we apply the same iteration loops to the fission source (but the production operator is 
now complex) and to the scattering source as customary, and we add an iteration loop between the 
real and imaginary parts of the neutron noise equation to the solution of the one-group problem: 
details can be found in [17-18]. Thus, we can use the standard one-group diffusion or transport solver 
and consequently benefit from all numerical techniques that are already implemented in these one-
group solvers. If needed, the noise source is computed by running a power iteration, in order to 

obtain the stationary critical flux 0 and the associated fundamental eigenvalue 𝑘. 

This solution scheme has been implemented in the IDT solver of APOLLO3®. The IDT solver is a 
lattice solver based on the Sn discrete ordinates method and on the method of short characteristics 
(MOSC). At the moment of writing this report, the 2-D neutron noise solver developed in APOLLO3® 
can be applied to homogeneous Cartesian geometries. Future work will concern the extension to 
heterogeneous Cartesian geometries. 

4 APOLLO3®-IPK neutron noise solver in the time domain 

The APOLLO3®-IPK neutron noise solver has been developed at CEA and used to simulate 
COLIBRI neutron noise experiments carried out at the CROCUS reactor [19]. 

4.1 Static simulations  

Considering a heterogeneous reactor model with different pin displacements such as the CROCUS 
reactor in the COLIBRI experiments [20], see Figure 1, the TDT solver is used to compute the angular 
flux distributions solving the critical problem defined as: 

𝛴̃𝑡𝜓(𝑟, 𝐸, Ω) = 𝐻𝜓(𝑟, 𝐸, Ω) +
1

𝑘
𝐹𝑡𝑜𝑡𝜙(𝑟, 𝐸), (11) 

where 𝒓⃗⃗ is the spatial coordinate, 𝑬 is the energy group, 𝜴 is the direction angle, 𝝍(𝒓⃗⃗, 𝑬, 𝜴) is the 
angular flux, 𝝓(𝒓⃗⃗, 𝑬) is the scalar flux, 𝑯 is the scattering operator, 𝑭𝒕𝒐𝒕 is the total fission operator, 

𝒌 is the multiplication eigenvalue and 𝜮̃𝒕 is the equivalent total cross section of the problem. The 

value of the equivalent total cross section is defined as: 𝜮̃𝒕(𝒓⃗⃗, 𝑬) = 𝜮𝒕(𝒓⃗⃗, 𝑬) + 𝑫(𝑬)𝑩𝟐, where 𝜮𝒕(𝒓⃗⃗, 𝑬) 

is the total cross section from nuclear data and the 𝑫(𝑬)𝑩𝟐 is the leakage coefficient times the 

buckling value. The 𝑫𝑩𝟐 term accounts for radial and axial leakage [21]. 
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Figure 1: Computational mesh of the unperturbed CROCUS reactor and its detectors. The center XY 
of the coordinate reference system is also indicated. 

4.2 The Improved Point-Kinetics – IPK noise model 

Advancing from a previous work [22], the presented model aims at giving a more detailed 
representation of neutron noise in the CROCUS reactor during COLIBRI tests. The newly developed 
Improved Point-Kinetics (IPK) model solves the reactor kinetics problem using a multi-group energy 
discretization starting from the flux and precursors concentration equations: 

(
1

𝑣
𝜕𝑡 + Ω ⋅ ∇ + Σ̃𝑡(𝑟, 𝐸, 𝑡)) 𝜓 = 𝐻𝜓 +

𝐹𝑝

𝑘𝑑𝑦𝑛
𝜙 +

𝐹𝑑𝐶

𝑘𝑑𝑦𝑛

(12) 

 

𝜕𝑡𝐶𝑖(𝑟, 𝑡) =  −𝜆̅𝑖𝐶𝑖(𝑟, 𝑡) + 𝛽𝑖 ∫ 𝑑𝐸′

𝐸

𝜈Σ𝑓(𝑟, 𝐸′, 𝑡)𝜙(𝑟, 𝐸′, 𝑡), (13) 

where Σ̃𝑡(𝑟, 𝐸, 𝑡) is the total cross section modified accounting for the 𝐷𝐵2 coefficient as determined 
in the static calculations, 𝜓 = 𝜓(𝑟, 𝐸, Ω, 𝑡) is the angular flux, 𝜙 = 𝜙(𝑟, 𝐸, 𝑡) is the scalar flux, 𝑘𝑑𝑦𝑛 is 

the dynamic eigenvalue [23] representative of the stationary oscillating regime calculated over the 
whole period of oscillation (𝑇), Σ𝑓 is the macroscopic fission cross section, 𝜈 is the average number 

of neutrons produced by fission, 𝛽𝑖 is the fraction of delayed neutron for family 𝑖. The term 𝐹𝑝 refers 

to the prompt fission operator and 𝐹𝑑𝐶 = ∑ 𝜒𝑑,𝑖𝜆𝑖𝐶𝑖
𝑁𝑑
𝑖=1  is the contribution from the neutron precursor 

concentration, with 𝐶𝑖 containing the convolution integral for the i-th precursor family with decay 

constant 𝜆𝑖. The delayed neutron source is integrated in time using a suitable quadrature formula to 
account for delayed-neutron contributions, as previously discussed in [23]. 

In the present model, differently from [24] and from the traditional quasi-static approach (e.g. [25]), 
in the angular flux factorization, the shape 𝑆 and power 𝑃 functions preserve their energy 
dependence and are defined according to: 

𝜓(𝑟, 𝐸, Ω, 𝑡) = 𝑆(𝑟, 𝐸, Ω, 𝑡) ⋅ 𝑃(𝐸, 𝑡). (14) 

 

The normalization condition adopted for all the energy groups 𝑁𝐺 of the IPK model is defined as: 

1

𝑣𝑔

〈𝜓†(𝑟, 𝐸𝑔, Ω′, 𝑡), 𝑆(𝑟, 𝐸𝑔 , Ω′, 𝑡)〉 = 1   ,   ∀𝑡 ∧  ∀𝑔 ∈ [1, 𝑁𝐺]. (15) 

 

where 𝑣𝑔 is the neutron speed in group 𝑔. 
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To obtain the point-kinetics equations, Eq. (14) is multiplied by a weighting function 𝜓† and integrated 
over space and angle (integration is denoted by 〈… 〉) obtaining the general formulation of the 
problem: 

〈𝜓†,
1

𝑣
𝜕𝑡𝜓〉 + 〈𝜓†, Ω ⋅ ∇𝜓〉 + 〈𝜓†, Σ̃𝑡(𝑟, 𝐸, 𝑡)𝜓〉 = 〈𝜓†, 𝐻𝜓〉 +

1

𝑘𝑑𝑦𝑛

〈𝜓†, 𝐹𝑝𝜙〉 +
1

𝑘𝑑𝑦𝑛

〈𝜓†, 𝐹𝑑𝐶〉. (16) 

In the present work, the weighting function is conveniently chosen as 𝜓† = 1, ∀𝑡 ∧  ∀𝑔 ∈ [1, 𝑁𝐺] and, 
using the divergence theorem, the streaming term in Eq. (15) can be written for each energy group 
as: 

〈𝜓†, Ω ⋅ ∇𝜓〉 =
𝐽+ − 𝐽−

〈𝑆 𝑣⁄ 〉
𝑃. (17) 

  

With some manipulations, accounting for Eqs. (16) and (17), it is finally possible to obtain the balance 
point-kinetics equation for each energy group 𝑔: 

 

𝜕𝑡𝑃 +
1

𝑣
〈𝜕𝑡𝑆〉𝑃 +

𝐽+ − 𝐽−

〈𝑆 𝑣⁄ 〉
𝑃 + 〈Σ̃𝑡𝑆〉𝑃 − 〈𝐻𝑆〉𝑃 =

1

𝑘𝑑𝑦𝑛

〈𝐹𝑝𝑆〉𝑃 +
1

𝑘𝑑𝑦𝑛

〈𝐹𝑑𝐶〉. (18) 

For the 𝑁 initial computed static distributions, normalized according to Eq. (17), all flux points in the 
phase space (𝑥⃗, 𝑡), where 𝑥⃗ = (𝑟, 𝐸, Ω), are interpolated in time over 𝑀 = 𝐿 × 𝑁, with 𝐿 ∈ ℕ+, equally 
spaced points along the period, using a Fourier interpolation [26] of the kind: 

𝑆(𝑥⃗, 𝑡) ≅ 𝑐0(𝑥⃗) + ∑ 𝑎𝑖(𝑥⃗) cos (
2𝜋

𝑇
𝑡) + 𝑏𝑖(𝑥⃗) sin (

2𝜋

𝑇
𝑡) ,

𝑁 2⁄

𝑖=1

(19) 

where the coefficients of the series (𝑐0, 𝑎𝑖 and 𝑏𝑖) are obtained as: 

𝑐0(𝑥⃗) =  
1

𝑁
∑ 𝑆(𝑥⃗, 𝑡𝑗)

𝑁

𝑗=1

, (20) 

𝑎𝑖(𝑥⃗) =  
2

𝑁
∑ 𝑆(𝑥⃗, 𝑡𝑗) cos (

2𝜋

𝑇
𝑗 ⋅ 𝑡𝑗)

𝑁

𝑗=1

, 𝑗 ≠ 𝑁 (21) 

𝑎𝑁(𝑥⃗) =  
1

𝑁
∑ 𝑆(𝑥⃗, 𝑡𝑗) cos (

2𝜋

𝑇
𝑁 ⋅ 𝑡𝑗)

𝑁

𝑗=1

, 𝑗 = 𝑁 (22) 

𝑏𝑖(𝑥⃗) =  
2

𝑁
∑ 𝑆(𝑥⃗, 𝑡𝑗) sin (

2𝜋

𝑇
𝑗 ⋅ 𝑡𝑗)

𝑁

𝑗=1

. (23) 

Concerning the temporal treatment, while the classical quasi-static method would imply the use of 
two different time scales for the solution of the equations for shape (coarse) and power (refined) [25], 
a single time scale is used to solve the transient. The final problem is a system of 𝑀 × 𝑁𝑔 equations 

to be solved iteratively using the power iteration method. With the converged 𝑃(𝐸, 𝑡), the angular flux 
is reconstructed and followed by the calculation and treatment of the detector responses. 

The APOLLO3®-IPK neutron noise solver has been used to simulate COLIBRI experiments carried 
out at CROCUS and the results are presented in the CORTEX deliverable D2.5 [27]. 

5 A procedure for neutron noise calculations using a stochastic 
code 

A Monte Carlo-based method, that allows estimating the neutron noise induced by stationary 
perturbations of macroscopic cross-sections in the frequency domain, has been developed at 
Chalmers. This method relies on the prior Monte Carlo computation of modified Green’s functions 
associated to the real part of the dynamic macroscopic cross-sections, mimicking equivalent 
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subcritical problems driven by external neutron sources. Once such modified Green’s functions are 
estimated, the neutron noise induced by any type of perturbations can be recovered, by solving a 
linear algebra problem accounting for the interdependence between the real and imaginary parts of 
the governing balance equations. A detailed description of the method can be found in [28]. 

5.1 Governing equations 

For the sake of simplicity and illustration, the framework of diffusion theory with two energy groups 
is used. The balance equations in the frequency domain are obtained from the same procedure 
described in subsection 2.1 and read as: 

 

 (24) 

 

                              (25) 

 

with 

                                         (26) 

 

                                        (27) 

 

                                               (28) 

 

                                                              (29) 

 

(30) 
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                                          (31) 

 

The Green’s function technique can be used to solve the noise problem. The induced neutron noise 
is then given by integrals between the noise source 𝛿𝑆𝑔′(𝒓′, 𝜔) and the Green’s function 

𝐺𝑔′→𝑔(𝒓, 𝒓′, 𝜔) with 𝑔, 𝑔′ = 1, 2, i.e.: 

 

  (32) 

 

The Green’s function is evaluated by replacing the right-hand side of Eqs. (24) or (25) with Dirac-like 
perturbations 𝛿(𝒓 − 𝒓′). 

5.2 Monte Carlo-based method 

The neutron noise calculated via Eqs. (24)-(25) is a complex quantity. Conventional Monte Carlo 
transport codes are not designed to solve these types of complex-valued problems; however, the 
proposed method allows to avoid the limitation. In the current case, all the complex quantities in Eqs. 
(24)-(25) are split into a real part (denoted with the superscript 𝑟) and an imaginary part (denoted 

with the superscript 𝑖) and, after rearranging, the following system of equations is derived: 

 

   (33) 

 

The matrix 𝑨(𝒓, 𝜔) and 𝑩(𝒓, 𝜔) are respectively equal to: 

  (34) 

 

                               (35) 

 

Equation (33) can be solved using the Green’s function technique. Accordingly, the right-hand side 
of Eq. (33) is replaced by a Dirac-like perturbation 𝛿(𝒓 − 𝒓′) in either the thermal or the fast energy 

group and the so-called modified Green’s function 𝐺̃𝑔′→𝑔(𝒓, 𝒓′, 𝜔) is estimated. The solution to the 

original neutron noise problem described by Eq. (33) is then obtained from integrals including the 

actual right-hand side of Eq. (33), denoted as 𝛿𝑆̃𝑔′(𝒓′, 𝜔) with 𝑔′ = 1, 2, and the modified Green’s 

function 𝐺̃𝑔′→𝑔(𝒓, 𝒓′, 𝜔), i.e.: 
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   (36) 

with 

                      (37) 

 

The Green’s function 𝐺̃𝑔′→𝑔(𝒓, 𝒓′, 𝜔) is different from the Green’s function 𝐺𝑔′→𝑔(𝒓, 𝒓′, 𝜔) used in Eq. 

(32) to solve the original set of Eqs. (24)-(25). In particular, the modified Green’s function 

𝐺̃𝑔′→𝑔(𝒓, 𝒓′, 𝜔) is real, whereas the Green’s function 𝐺𝑔′→𝑔(𝒓, 𝒓′, 𝜔) is complex. The main advantage 

of reformulating the solution from Eq. (32) to Eq. (36) lies with the fact that the reaction rates 
appearing in the matrix 𝑨(𝒓, 𝜔) are all real and it could be demonstrated that those reaction rates 
have the same sign as when solving the problem of a subcritical system. The modified Green’s 

function 𝐺̃𝑔′→𝑔(𝒓, 𝒓′, 𝜔) can thus be determined using Monte Carlo techniques, as long as the 

macroscopic cross-sections can be specified using cross-section files in a proper format [20]. 

Because of the spatial variables 𝒓 and 𝒓′ appearing in the modified Green’s function 𝐺̃𝑔′→𝑔(𝒓, 𝒓′, 𝜔), 

a spatial discretization of the system being modelled is required prior to computing the modified 
Green’s functions. Then the system has to be replaced by a set of homogenized regions using 
properly averaged macroscopic cross sections. The proposed method is similar to the fission matrix 
method used in Monte Carlo simulations, where the production of neutrons in a given homogenized 
region due to neutrons born in any homogenized region is determined. After the spatial discretization, 
Eqs. (36) and (37) can be recast into: 

 

                    (38) 

 

All the quantities in the equation above are generically vectors and matrices taking both the spatial 
and energy discretization of all balance equations into account. In the end, Eq. (38) is rewritten as: 

 

                        (39) 

 

Equation (39) is a linear system of equations that can be solved once the discretized modified 

Green’s functions 𝐺̃𝑔′→𝑔(𝒓, 𝒓′, 𝜔) have been determined from a Monte Carlo code. Therefore, the 

coupling between the real and imaginary parts of the induced neutron noise is resolved externally to 
the Monte Carlo simulations. 

6 TRIPOLI-4® neutron noise solver 

TRIPOLI-4® is the reference Monte Carlo code developed at CEA [29]. A frequency-domain noise 
solver was implemented in TRIPOLI-4® for the purposes of the CORTEX project, based on previous 
work on a prototype Monte Carlo code [30]. The basic implementation details are sketched in [31] 
and the treatment of the “noise source” corresponding to mechanical vibrations is dealt with in [32]. 
The key ideas of the solver and the overall simulation strategy are largely inspired by the findings of 
Amélie Rouchon’s PhD thesis [17], based on the pioneering contributions of [33]. In the following, 
we provide an overview of the noise solver and detail its main features. 
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6.1 Overall computational strategy 

We briefly review the noise equations in the frequency domain, in order to provide a coherent 
framework, and then detail how TRIPOLI-4® solves these equations. 

 

6.1.1 The noise equations in the frequency domain 

The version of the noise equations that TRIPOLI-4® solves by the Monte Carlo method corresponds 
to the so-called orthodox linearization of the Fourier-transformed exact noise equations. The exact 

noise equations for the frequency-domain neutron noise () = (r, , E, ) read 

              (40) 

where 

         (41) 

is the Fourier-transformed Boltzmann operator (notation is as customary, and  denotes the angular 

frequency), c(r, , E) is the critical flux satisfying the k-eigenvalue Boltzmann equation (having 
associated fundamental eigenvalue keff), and  

           (42) 

is the perturbation operator. The terms 𝛿Σ𝛼(𝒓, 𝐸, 𝜔) appearing in the perturbation operator express 

the Fourier-transformed cross section perturbations for a given reaction 𝛼, and depend on the 
specific noise model (this point will be illustrated in the following). The orthodox linearization consists 
in neglecting the product of perturbed quantities, which yields the linearized noise equation in the 
frequency domain, namely, 

                                                (43) 

Formally speaking, the linearized noise equation has the structure of a fixed-source transport 

equation for the unknown noise field () = (r, , E, ), where - () c(r, , E) is the “noise 

source” and () is the transport operator. Observe that both () and () are complex quantities. 
The impact of considering the linearized noise equation instead of the exact noise equation in the 
frequency domain has been thoroughly discussed in [32]. From now on, we will focus exclusively on 
the linearized noise equation, which is precisely the equation that is solved by TRIPOLI-4®. 

 

6.1.2 Computational strategy 

In view of the structure of the linearized noise equation, the solution strategy by Monte Carlo method 
is the following: 
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1. First, determine the critical flux c(r, , E), which can be achieved by running a regular power 
iteration with a sufficient number of inactive cycles, starting from an arbitrary neutron 
distribution. 

2. Once the neutron population is distributed according to c(r, , E), sample the noise source 

- () c(r, , E). The operator () must be prepared before running the simulation and 
depends on the specific noise problem under consideration, since it contains the Fourier-

transformed perturbed cross sections (). Typical functional forms of the perturbed cross 

sections () will be discussed later on, for oscillations and mechanical vibrations. 

3. Since () is in general complex, the noise source stemming from - () c(r, , E) will be 
also complex: this means that the resulting particle population must carry two weights, one 
for the real part and one for the imaginary part, each having a sign. 

4. The particle population must be transported by following the stochastic rules imposed by the 

operator (), in order to determine the noise field (). Since () closely resembles the 
regular Boltzmann operator, up to slight frequency-dependent modifications, we will show 

that it is possible to solve the transport problem associated to () by a set of stochastic 
rules that can be obtained by suitably modifying those associated to the regular Boltzmann 
operator. 

5. Independent replicas over a collection of M batches will ensure that error bars on the noise 

field () can be correctly estimated. 

 

The overall computational scheme, including the preparation of critical eigenstate, the sampling of 
the noise source and the propagation of the noise particles, is synthetized in Figure 2. 

 

 

Figure 2: Overall computational scheme used in TRIPOLI-4®. 

 

A complete power iteration is performed once in the first batch: during the final cycle noise source 
particles are sampled so that the noise simulation can begin, while the generated fission neutrons 
are transferred to the second batch. This latter runs a few additional inactive cycles in order to ensure 
reasonable decorrelation between cycles before sampling the noise source for the second replica. 
The third batch gets the fission neutrons generated by the second one, and so on. In a parallel run, 
each processor would apply this strategy. 

6.2 Sampling the noise source 

The noise source models currently available in TRIPOLI-4® cover oscillations and mechanical 
vibrations, whose assumptions and explicit expressions are recalled in the following. 
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6.2.1 Oscillations 

For the case of oscillations, which would be an adequate model to represent, e.g., the effects of 
temperature-induced modifications of the cross sections (as in the case of absorbers of variable 
strength), without any spatial movement, the perturbed cross sections in the time domain are 
assumed to be of the form 

                         (44) 

where  is the non-perturbed cross section,  is the amplitude of the perturbation and  is the 
frequency of the perturbation. Then, by using the Fourier transform 

                        (45) 

the expression for the perturbed cross section on the frequency domain is readily obtained. The 

resulting noise source is thus monochromatic, at frequency , and we thus expect the induced noise 

field () to be also monochromatic at frequency , i.e., () = () due to the linearity of the 
noise equations that are solved by TRIPOLI-4®. 

 

6.2.2 Mechanical vibrations 

Let us now assume that the neutron noise is induced by one or several vibrating interfaces between 
homogeneous materials. We will focus on the case where the vibration acts along a single axis, say 

x, and let us denote by x0 the unperturbed position of the interface. We define Σ𝛼
𝐿 (𝐸) and Σ𝛼

𝑅(𝐸) the 
spatially homogeneous cross sections of the regions at the left (x < x0) and the right (x > x0), 

respectively, of the interface at x0. We assume that the vibration is periodic, with frequency 0 and 

period T0 = 2 / 0, and with amplitude  smaller than the linear size d of the region concerned by 
the interface perturbation. The position of the moving interface will be described by 

                                                     (46) 

with 

                                                   (47) 

Under these assumptions, the general form of the interface perturbation in the time domain is 

              (48) 

where 

                                                    (49) 

and 𝐻(𝑧) is the Heaviside function, with 𝐻(𝑧)  =  1 for z ≥ 0, and 𝐻(𝑧)  =  0 otherwise. Observe that 

𝛿Σ𝛼(𝑥, 𝐸, 𝑡) is non-zero only in the region traversed by the vibrating interface, namely, 𝑥0 − 𝜀 ≤ 𝑥 ≤
𝑥0 − 𝜀.  

Let us first consider the region x > x0, where 

                                (50) 

In this case, the Heaviside function is equal to unity when 

                                                          (51) 

and zero otherwise, i.e., between time 

                                                      (52) 
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and 

                                           (53) 

This condition yields a rectangular wave 

              (54) 

whose Fourier transform yields 

           (55) 

This equation defines an infinite sum of contributions corresponding to discrete frequencies ±𝑛𝜔0 

with 𝑛 = 0,1, …, multiple of the fundamental frequency . The space-dependent Fourier coefficients 
are given by 

                         (56) 

and 

                                       (57) 

for 𝑛 ≥  1, whose amplitude decreases with increasing 𝑛. In particular, the coefficient corresponding 

to the first harmonic at  is negative and imaginary: 

                                             (58) 

for the second harmonic at 2 the coefficient is negative and real: 

                              (59) 

More generally, all odd coefficients are imaginary, and all even coefficients are real. 

For the region 𝑥 < 𝑥0, we have 

                        (60) 

In this case, the Heaviside function is equal to unity when 

                                                   (61) 

and zero otherwise, i.e., between time 𝑇0/2 + 𝜏(𝑥, 𝑥0) and 𝑇0 − 𝜏(𝑥, 𝑥0). This condition defines a 
rectangular wave that is shifted by T0/2 with respect to the one for the region 𝑥 > 𝑥0. By applying the 
Fourier transform, we have thus 
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    (62) 

where 

                                         (63) 

for 𝑛 ≥ 1, and 

                                    (64) 

The spatial behavior of the exact noise source is illustrated in Figure 3. 

 

 

Figure 3: The spatial shape of the noise source. Comparison between the exact representation used 
in TRIPOLI-4® (plotted as solid line) and the 𝜺/𝒅 approximation (plotted as a dashed line, using the 
nascent functions to represent the singular spatial behavior located at the interface), see details in 
[32]. Left: the imaginary part of the component at 𝝎𝟎; right: the real part of the component at 𝟐𝝎𝟎. 

 

So far, we have examined a single vibrating interface. The case of a region of size d vibrating into a 
host material can be dealt with by considering the linear superposition of the effects of two vibrating 
interfaces, each located at the boundaries of the region. In this case, the terms corresponding to the 
respective boundaries will have opposite signs, so that one might possibly expect interference 
phenomena due to the simultaneous presence of two vibrating interfaces. The intensity of the 

interference of the interfaces will depend on the interplay between the vibration amplitude  and the 

linear separation 𝑑 between the boundaries: these effects are thoroughly discussed in [32]. 

The previous equations completely define the Fourier spectrum of the noise source corresponding 
to a vibrating boundary between two homogeneous regions, for a sinusoidal displacement at a single 

frequency . By virtue of the functional form of the noise source, the system will in principle respond 
to the vibration at several discrete frequencies 𝑛𝜔0, despite the impulsion being monochromatic at 

𝜔0. The noise response () for a given discrete frequency 𝜔𝑛 = 𝑛𝜔0  will depend on the source 
intensity, i.e., on the space-dependent Fourier coefficients and on the shape of the fundamental flux 

c(r, , E). The noise source term for mechanical vibrations can be generally written as 

                                     (65) 
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with the appropriate noise source components n associated to the cross-section perturbations, to 

be inferred by the previous definitions of the Fourier coefficients in the expressions of () We thus 

expect the noise field () to be of the form 

                               (66) 

where n solve 

                                                    (67) 

i.e., an infinite system of fully decoupled linearized noise equations. Here we have denoted the noise 

operator by k = (=k) and the perturbation operator by k = (=k), respectively, evaluated 

at the discrete frequencies k of the source. TRIPOLI-4® solves each contribution separately, for 
the chosen index n of the noise harmonic. In practice, only the first few components are computed 
(see the discussion in [32] concerning the relevance of the higher harmonics). The noise source 
contributions due to negative frequencies n < 0 can be dealt with by observing that  

                                                             (68)  

where the dagger symbol denotes complex conjugation. Finally, the noise source contribution at 𝑛 =
 0, which corresponds to  = 0 (i.e., the time-average of the perturbation), physically represents the 
offset due to the fact that the perturbation will in general introduce a non-vanishing reactivity effect 
in the system. For the linearized noise equations all the components are decoupled from each other, 
so that the equation for 𝑛 =  0 will not influence the others and can be disregarded when solving for 

𝑛 ≥  1.   

 

6.2.3 Sampling methods 

For both the oscillation and the vibration model, the resulting noise source -() c(r, , E) is a 

complex function depending on the stationary flux c(r, , E). As mentioned, a standard power 
iteration is first run in order for the neutron population to be distributed according to the critical flux 

c(r, , E). The fundamental k-eigenvalue is simultaneously determined. The noise source for a 

given frequency k0 is then sampled by weighting the ‘noise particles’ associated by each 

component of () by the stationary collision density associated to c(r, , E). For instance, for the 
prompt fission term we would have 

1

𝑘

𝜒𝑝(𝐸)

4𝜋
∬ 𝜈𝑝(𝐸′)

𝛿Σ0,𝑓(𝒓, 𝐸′, 𝜔)

Σ0,𝑓(𝒓, 𝐸′)
Σ0,𝑓(𝒓, 𝐸′)𝜑𝑐(𝒓, 𝛀′, 𝐸′)𝑑𝐸′𝑑𝛀′ (69) 

 

which means that at fission events we would instantiate p/k ‘noise particles’ with spectrum p(E) and 
with a (generally complex) statistical weight multiplier 𝛿Σ𝑓(𝒓, 𝐸′, 𝜔)/Σ0,𝑓(𝒓, 𝐸′) depending on the 

specific perturbation. Observe that the eigenvalue k must be also known, in addition to the 

fundamental mode c. The delayed fission term contains an additional weight multiplier, depending 
on the frequency and on the decay constants of the precursors: this factor can be interpreted as an 
effective frequency-dependent delayed neutron yield 

                                             (70) 

which can be readily transformed into a weight multiplier. More generally, all the terms of the noise 
source can be written as 

                     (71) 
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which have the form of a production rate (associated to the event “r”) with a weight multiplier involving 
the Fourier-transformed cross section perturbations and possibly a frequency-dependent yield.  

 

Consequently, the resulting noise source will be composed by a collection of particles being 

produced with rate r c, having a spectrum 𝑓𝑟, and a complex weight  

                                             (72) 

where the signs of the real and imaginary parts of particle weights can be positive or negative. 

6.3 Solving the linearized noise equations 

Suppose now that the noise source -() c(r, , E) has been sampled by the procedures 
described above. We want now to solve the linearized noise equation 

                                                    (73) 

for a collection of discrete frequencies n of the source. We recall that n = (=n) and n = 

(=n) denote respectively the noise operator and the perturbation operator, evaluated at the 

discrete frequencies. The operator (=n) is basically a modified Boltzmann operator, containing 

additional complex terms. In [30] we have suggested a sampling scheme to estimate n by Monte 
Carlo sampling, and this strategy has been later implemented in TRIPOLI-4® for the CORTEX 
project [31]. In the following, we will sketch the basic principles of the involved methods. 

 

6.3.1 Sampling strategy 

The operator (=n) differs from the regular Boltzmann operator because of two terms: the 
frequency-dependent imaginary 1/𝑣 absorption cross section appearing on the “disappearance” side 
of the equation, and the frequency-dependent complex fission multiplicity appearing in the delayed 
fission operator. 

Pioneering work in dealing with these terms within the framework of a Monte Carlo random walk 
approach has been carried out in reference [33], where the imaginary 1/𝑣 absorption cross section 
has been dealt with by modifying the particle weight along each flight. In TRIPOLI-4®, we have 
chosen instead to work with a real total cross section, and we have thus modified the collision kernel 

accordingly. This is achieved by following the strategy discussed in [30-31]: we add a term 𝜂𝜔/𝜐,  

being a real constant and having the same sign as , to both sides of the noise equation, and we 
move the term 𝑖𝜔/𝜐 to the right-hand-side. Then, the noise equation can be identically rewritten as: 

(𝛀 ∙ ∇ + Σ0(𝒓, 𝐸) + 𝜂
𝜔

𝜈
) 𝛿𝜑(𝒓, 𝛀, 𝐸, 𝜔) =

𝜂 − 𝑖

𝜂
𝜂

𝜔

𝜈
𝛿𝜑(𝒓, 𝛀, 𝐸, 𝜔) + (… ) (74) 

Thanks to this algebraic manipulation, we can work with a real modified total cross-section 

                                (75) 

where 

                                                  (76) 

Hence, flight lengths are sampled as in standard Monte Carlo calculations, provided that the modified 
total cross section is used instead of the original unperturbed total cross section. The new term 
appearing at the right-hand side of the equation can be interpreted as a production operator with a 

cross section 𝜂𝜔/𝜐, a yield (𝜂 − 𝑖)/𝜂, and a fictitious “delta spectrum” over direction and energy, of 
the kind 𝛿(𝛀 − 𝛀′)𝛿(𝐸 − 𝐸′): in this respect, this term physically represents a copy operator. 

Because of the structure of the linearized noise equation after the algebraic manipulations above, 
the collision operator is now composed of two types of particle productions, both appearing on the 

right-hand side of the transport equation: regular fission with probability Σ0,𝑓/Σ̃0, and a special -

production associated to a copy operator with probability Σ𝜔/Σ̃0. 
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We treat fission as customary, i.e., the number of prompt or delayed fission neutrons is determined 

as 𝐼𝑛𝑡(𝑣𝑞Σ0,𝑓/Σ̃0 + 𝜉), where 𝐼𝑛𝑡(… ) denotes the integer part,  is a uniform random number in [0,1), 

and q = p,d. Because of the factor 𝑣𝑑,𝜔
𝑗

 appearing in the delayed fission production term, the weight 

𝑤𝑑 of each new delayed neutron created by fission is modified to: 

                                                   (77) 

where 𝑤 is the particle weight before the fission event. The term representing the -production 
consists of a copy of the incident neutron (energy and direction are the same as before the collision 
event) with a new weight given by: 

                                                          (78)  

Implicit capture (with forced fission) and Russian roulette can be used as in standard Monte Carlo 
method. Similar as in [33], Russian roulette is applied separately to the absolute value of the real 
and imaginary parts of the particle weight: the particle is killed only if the real and the imaginary parts 
are both killed. 

 

6.3.2 Tallies 

Scores such as neutron noise and reaction rates (weighted by the noise) over volumes and 
space/energy meshes have been extended in order to decompose the complex Monte Carlo 
estimators into real and imaginary part. If needed, the noise field can be then converted to APSD or 
CPSD in a post-processing phase, after the calculation. 

 

6.3.3 Convergence and numerical stability 

At low and very high frequencies, i.e., far from the plateau region of the zero-power reactor transfer 
function of the system (typically below 0.01 Hz and above 1 kHz), Monte Carlo methods for noise 
propagation lead to the production of a very large number of particles and the calculation time 
explodes [30, 31 and 33]. To perform simulations at low and very high frequencies, a weight 
cancellation technique has been proposed and tested in [33]; the collision-based method used in 
TRIPOLI-4® does not use the weight cancellation technique, and nonetheless turns out to be rather 
robust, with the possible exception of mechanical vibration sources where strong positive/negative 
particle compensation effects might occur [30, 32]. For more details concerning convergence, we 
refer the reader to [30]. 

For the frequency region of interest for most applications in reactor noise analysis, i.e., 
approximatively between 0.01 Hz and 100 Hz, the TRIPOLI-4® algorithm described above 

converges safely with  = 1. Extreme cases beyond this frequency region have also been tested and 

calculations converge by suppressing implicit capture (and possibly tuning the  value as well at 
very high frequencies). 

To summarize, the TRIPOLI-4® method 

(i) uses the conventional algorithm for fixed-source problems for all frequencies, 

(ii) does not use the weight cancellation technique, and 

(iii) is based on a real total cross-section and a modified collision kernel. 

The major advantage of this algorithm is that it introduces minimal modifications to standard Monte 
Carlo algorithms for particle transport (the key modification concerning the weight modification at 
delayed fission events and the special “copy” event) and can thus be implemented in continuous-
energy production Monte Carlo codes. 
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6.4 Verification of the TRIPOLI-4® noise solver 

The TRIPOLI-4® neutron noise solver developed for CORTEX has been extensively verified, in view 
of the novelty of its features (in particular the simultaneous presence of real and imaginary particles, 
each carrying an alternating sign). For this purpose, we have tested the TRIPOLI-4® neutron noise 
solver against analytical solutions for an infinite homogeneous medium in the case of single-speed 
and continuous-energy problems, for an infinitely homogeneous cylindrical core, and for one-
dimensional homogeneous core surrounded by a reflector. Various kinds of noise sources have been 

used. All Monte Carlo results (based on the track length estimator) will be plotted with their 1- error 
bars (barely visible in the figures). Other verification tests concerning the basic features of the 
algorithms had been previously discussed in [30]. 

 

6.4.1 Infinite homogeneous medium 

For an infinite homogeneous medium in the case of single-speed problem, the results of the 
TRIPOLI-4® neutron noise solver are verified against analytical results (see [33] for the problem 
description and the analytical solutions). Here, the noise source is defined by 𝑆 = −1 + 𝑖 at each 
frequency. Results are shown in Figure 4: an excellent agreement is found. 

 

 

Figure 4: Modulus and phase of the neutron noise versus frequency in an infinite homogeneous 
medium (single-speed transport). 

 

For an infinite homogeneous medium in the case of continuous-energy problem, the neutron noise 
solver is again verified against analytical results (see Figure 5). Here, the noise source is defined by 
𝑆 = 2 − 3𝑖 between 1 and 2 MeV and 𝑆 = 0.75 + 5𝑖 between 0.0001 and 0.0005 MeV at 3 Hz. For 
the sake of simplicity, for our tests we have modelled scattering by using a Maxwell spectrum and 
fission by a Watt spectrum. This example illustrates the capability of the neutron noise solver to 
correctly simulate continuous-energy problems. 
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Figure 5: Modulus and phase of the neutron noise versus energy at 3 Hz in an infinite homogeneous 
medium (continuous-energy transport). 

 

6.4.2 One-dimensional homogeneous core surrounded by a reflector 

The final verification test concerns a one-dimensional homogeneous core surrounded by a reflector 
with two energy groups (see [6] for all details of the problem data and analytical results). Results are 
shown in Figure 6. Here, the noise source is defined by 𝑆 = −3 − 0.5𝑖 for the fast group and 𝑆 =
−1.2 + 2𝑖 for the thermal group at 1Hz and at the core/reflector interface. Again, an excellent 
agreement is found with respect to exact results. 

 

 

Figure 6: Modulus and phase of the neutron noise versus position at 1 Hz in a one-dimensional 
homogeneous core surrounded by a reflector. 

 

7 KU Monte Carlo neutron noise solver 

A Monte Carlo solver has been developed by Kyoto University (KU) and is used for comparison with 
other solvers (see section 8.4). The solver allows neutron noise simulations of multi-energy group 
problems in two- or three-dimensional rectangular geometry. As of now, the number of the energy 
groups is up to four. 

7.1 Neutron noise equation 

The fundamental linearized frequency-domain multi-group equation for neutron noise, 𝛿𝜙𝑔, to be 

solved is a simplified version of Eqs. (4)-(5) and is given by: 
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𝛀 ∙ ∇𝛿𝜙𝑔(𝒓, 𝛀, 𝜔) + 𝛴𝑡0𝑔(𝒓)𝛿𝜙𝑔(𝒓, 𝛀, 𝜔) +
1

4𝜋
∑ 𝛴𝑠0

𝑔→𝑔′

(𝒓)𝛿𝜙𝑔(𝒓, 𝛀, 𝜔)

𝐺

𝑔′=1

𝑔≠𝑔′

=
𝜒𝑔

4𝜋𝑘𝑒𝑓𝑓
(1 −

𝑖𝜔𝛽

𝑖𝜔 + 𝜆
) ∑ 𝜈Σ𝑓0𝑔′(𝒓)𝛿𝜙𝑔′(𝒓, 𝛀, 𝜔)

𝐺

𝑔′=1

+
1

4𝜋
∑ 𝛴𝑠0

𝑔′→𝑔(𝒓)𝛿𝜙𝑔′(𝒓, 𝛀, 𝜔)

𝐺

𝑔′=1

𝑔≠𝑔′

 

−
𝑖𝜔

𝑣𝑔
𝛿𝜙𝑔(𝒓, 𝛀, 𝜔) + 𝑆𝑔(𝒓, 𝛀, 𝜔) (79) 

where 𝜔 is the angular frequency of the neutron noise; the subscript 0 denotes an unperturbed 
parameter; other notations are standard in the nuclear engineering field. Here, the macroscopic 
scattering cross section is isotropic and one delayed neutron group is assumed. The Monte Carlo 
algorithm for solving this equation is almost the same as for ordinary neutron transport calculations. 
The main differences are that the flux for neutron noise has two values (i.e., real and complex 
values); the fission neutron is multiplied by (1 − 𝑖𝜔𝛽/(𝑖𝜔 + 𝜆)) as seen in the first term on the right-
hand side; the third term on the right-hand side needs to be included during the random walk process; 
and the last term is the neutron noise source. 

7.2 Monte Carlo solution algorithm 

The Monte Carlo procedure for the solution of Eq. (79), the estimators used for neutron noise, the 
applicability with respect to the frequency range, and the use of neutron cross sections and model 
geometry from the code SIMULATE-5 are discussed. 

7.2.1 Procedures of Monte Carlo calculation by KU 

The Monte Carlo calculation flow for solving the neutron noise transport equation is presented here 
as follows [33]: 

(1) A noise source particle is emitted from the neutron noise source position. The position, direction, 
and energy group of the noise source in the frequency domain is determined according to  

𝑆𝑔(𝒓, 𝛀, 𝜔). The particle weight is usually a complex value.  

(2) The particle is transported to the collision point that is determined by the same procedure as the 
ordinary Monte Carlo transport calculations. 

(3) However, we need to consider the third term on the right-hand side of Eq. (79). There exist 
several methods for considering this term. The KU solver adopts a method where the particle 
weight continuously changes as follows: 

𝑊𝑗+1 = 𝑊𝑗 ∙ 𝑒𝑥𝑝 (−
𝑖𝜔

𝑣𝑔𝑗
𝑠𝑗),                                                 (80) 

where 𝑊𝑗 is the particle weight at the beginning of the j-th flight path whose flight length is 𝑠𝑗; 

𝑊𝑗+1 is the weight at the end of the flight. 

(4) At each collision point, weight reduction is performed as in the ordinary Monte Carlo method. 
The weights of the real and imaginary parts are multiplied by Σ𝑠/Σ𝑡. 

(5) Russian roulette game is played if either of the real or imaginary part of the complex-valued 
weight is below the lower weight boundary for Russian roulette game. If both the real and 
imaginary parts are killed at the same time, the particle is killed. However, if one of both parts 
survives, the particle still continues to fly. 

(6) If fission reaction occurs at a collision point, particles caused by the fission reaction are generated 
as the ordinary Monte Carlo transport calculations. However, the weights of the particles are 

multiplied by (1 − 𝑖𝜔𝛽/(𝑖𝜔 + 𝜆)). 
(7) After the particle emitted from the source and its progenies are killed, return to step (1) and a 

new source particle is emitted. 
(8) Repeat steps (1) through (7) until desired statistics are obtained. 
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7.2.2 Tallying 

During the random walk process presented in section 7.1.1, the neutron noise is calculated using 
the collision estimator or the track length estimators. The collision estimator accumulates the 
estimates 𝑤/Σ𝑡𝑔 at each collision point where 𝑤 is a complex-valued weight and thus the estimate 

is also a complex value. The track length estimator is different from the ordinary Monte Carlo 
transport calculations because the weight changes continuously during the flight. The track length 
estimator for the j-th flight path is given by 

𝑇𝐿𝑗 = ∫ 𝑊𝑗 ∙ 𝑒𝑥𝑝 (−
𝑖𝜔

𝑣𝑔𝑗
𝑠′) 𝑑𝑠′

𝑠𝑗

0

= 𝑊𝑗

𝑖𝑣𝑔𝑗

𝜔
(𝑒𝑥𝑝 (−

𝑖𝜔

𝑣𝑔𝑗
𝑠𝑗) − 1).          (81) 

 

7.2.3 Available frequency range 

As pointed out in [30, 33], too many particles are produced when we solve Eq. (79) for frequency 
range outside the plateau frequency range, thereby resulting in abnormal termination of the Monte 
Carlo calculation. A Monte Carlo algorithm to circumvent this difficulty is proposed in [30, 33]. 
However, implementing such an elaborate algorithm is omitted in the solver developed here. Thus, 
the frequency range where the solver is applicable is limited, i.e., approximately between 0.05 and 
30 Hz. 

 

7.2.4 Connection with SIMULATE-5 

The Monte Carlo solver has a capability of reading macroscopic cross sections and core geometry 
from the output file of the code SIMULATE-5 [34]. The Monte Carlo solver can automatically 
construct the same 3D core configuration as in SIMULATE-5. While SIMULATE-5 uses diffusion 
coefficients, the total cross sections that the Monte Carlo solver uses is approximated by Σ𝑡 ≈ 1/(3𝐷) 
and isotropic scattering is assumed. The discontinuity factors in SIMULATE-5 are used in the Monte 
Carlo solver when a particle passes through a boundary between node 1 and node 2 as 

𝑊2 = 𝑊1 ∙
𝐷𝐹1

𝐷𝐹2
,                                                                         (82) 

where 𝑊1 and 𝑊2 are the particle weights on the boundary surface between node 1 and node 2, 

respectively and 𝐷𝐹1 and 𝐷𝐹2 are the discontinuity factors on the boundary surface between node 1 
and node 2, respectively. 

8 Comparisons of neutron noise solvers 

The solvers discussed above have been compared to verify their algorithms. In addition, 
comparisons have also been carried out between these solvers and diffusion-based solvers to 
investigate possible differences between higher-order and low-order methods.   

8.1 Comparison between TRIPOLI-4® and APOLLO3® 

In order to illustrate the capabilities and the accuracy of the APOLLO3® and TRIPOLI-4® neutron 
noise solvers, we have performed code-to-code comparisons for two neutron noise simulations in a 
simplified UOX fuel assembly, in two dimensions. In this section, we describe the examined 
geometry and material compositions, and then the neutron noise simulations: the neutron noise 
induced by a simple isotropic noise source and by a cross-section oscillation. 

 

8.1.1 Description of the test configuration 

The chosen geometry is a simplified UOX fuel assembly, with reflecting boundary conditions, 
composed by 264 homogeneous square fuel pins y (0.7314 x 0.7314 cm) with 25 homogeneous 
water holes (1.26 x 1.26 cm). The square configuration of the fuel pins is required by the 2-D neutron 
noise solver developed in APOLLO3® being restricted to homogeneous Cartesian geometries for 
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the time being. For the sake of simplicity, and in view of comparing the two solvers on clean 
configurations where a high numerical accuracy can be achieved, all simulations (steady state and 
noise transport) have been performed with two energy groups (fast and thermal groups without up-
scattering) and one precursors family. For the APOLLO3® transport solver, we chose an order of 
discrete ordinates S32 and a constant approximation of the volume flux with the spatial meshes, as 
shown in Figure 7. 

 

 

Figure 7: Simplified UOX fuel assembly: 2D geometry with spatial meshes. The perturbed fuel pin is 
marked in black. 

 

For the criticality calculations, we obtain a critical k-eigenvalue equal to 0.99912 ± 8x10-5 with 
TRIPOLI-4® (with 3x104 active cycles and 104 neutrons per cycle) and to 0.99784 with APOLLO3® 
(10-6 tolerance on the outer iterations and no acceleration). The corresponding steady-state fluxes 
are shown in Figure 8. Relative errors between APOLLO3® and TRIPOLI-4® for the steady-state 
fluxes are smaller than 1% on the whole assembly. 

 

 

Figure 8: Steady-state flux of the reference case (scalar flux, TRIPOLI-4® results with 𝝈 < 𝟎. 𝟑%). 

 

8.1.2 A simple noise source 

As a first noise calculation for the two solvers, we impose a simple isotropic noise source 𝑆 = −1 + 𝑖 
at  = 3 Hz in a perturbed fuel pin, in the thermal group (the location of the perturbed fuel pin is 
detailed in the figure of the assembly geometry above). Simulation findings for the spatially and 
energy-resolved over the fuel assembly are shown in Figure 9 (we have converted the real and 
imaginary part in polar form, with modulus and phase). The phase of the neutron noise is almost 
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constant and is not shown here. The noise calculations of TRIPOLI-4® have been performed with 
3x103 replicas and 104 particles per replica. 

 

 

 

Figure 9: Results and relative errors (%) between TRIPOLI-4® and APOLLO3® on the modulus of the 

noise field  induced by a simple isotropic noise source at  = 3 Hz. 

 

A good agreement is found between APOLLO3® and TRIPOLI-4®: the relative errors on the 
modulus are comparable to the relative errors on the steady-state flux, i.e., smaller than 1% over the 
assembly. 

 

8.1.3 An oscillation-induced noise source 

We consider next the spatially and energy-resolved modulus and phase of the noise field  induced 

by a sinusoidal oscillation of all macroscopic cross-sections of a perturbed fuel pin at  = 1 Hz (the 
position of the perturbed fuel pin is detailed in the figure of the assembly geometry above). The 
perturbed cross section term in the time domain is defined by: 

                                    (83) 

with  the angular frequency of the perturbation (here  = 2 rad/s). The perturbation amplitude is 

taken as  = 4.1% for the total cross-section,  = 3.4% for the scattering cross-section and  = 2.1% 
for the fission cross-section. Results are shown in Figure 10 for a noise source corresponding to a 
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critical state  computed as detailed above. The phase of the neutron noise is again almost constant 
and will not be shown. The noise calculations of TRIPOLI-4® have been performed with 105 replicas 
and 3 x 104 particles per replica. 

 

 

 

Figure 10: Results and relative errors (%) between TRIPOLI-4® and APOLLO3® on the modulus of the 

noise field  induced by an oscillation noise source at  = 1 Hz. 

 

Similarly, as for the previous case, a good agreement is found between APOLLO3® and TRIPOLI-
4® for the oscillation calculation: the relative errors on the modulus are smaller than 2%. 

8.2 Comparison between NOISE-SN and CORE SIM 

An initial version of the neutron noise solver NOISE-SN has been compared with CORE SIM, which 
is a solver based on diffusion theory [6]. For the comparison, a two-dimensional, heterogeneous 
critical system with a localized perturbation, is considered. More details of this work are discussed 
in [35]. 

 

8.2.1 Neutron noise problem based on the C3 system 

A neutron noise problem in a 2-D heterogeneous system is considered. The system is based on the 
C3 benchmark on deterministic transport calculations [36] and it is perturbed by introducing a 
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localized neutron noise source. The system configuration is given in Figure 11. It consists of two 
UO2 fuel assemblies (at North-West and South-East positions) and two MOX fuel assemblies (at 
North-East and South-West positions). The dark blue squares in the illustration are guide tubes; the 
ones in the center of the fuel assemblies contain fission chambers. Reflective boundary conditions 
are imposed. The perturbation is a fluctuation of 5% of the fast and thermal neutron capture cross-
sections in the fuel cell (16,19) identified with a red square in Figure 11. 

 

Figure 11: C3 configuration and location of the neutron noise source (in red). 

 

8.2.2 Results 

The effect of the frequency of the neutron noise source, is investigated with respect to the range 
between 0.01 Hz and 100 Hz. The resolution of the spatial mesh is chosen to be 5x5 nodes per fuel 
cell/guide tube, and the 𝑆8 approximation is used for the discrete ordinate solver. The results for the 
neutron noise amplitude are presented in Figures 12 to 15 and they are respectively related to the 
following locations: (16,19) where the perturbation is placed; (17,18) as representative of fuel cells 
close to the perturbation; (25,10) as representative of the fuel cells far away from the perturbation; 
(31,4) as representative of the guide tubes in the MOX fuel assemblies. In addition, Figures 16 and 
17 provide an example of the behavior of the phase of the neutron noise, taken respectively at the 
location of the perturbation (16,19) and at the location (17,18) close to the perturbation. 

In general, the behavior of the predicted neutron noise with respect to the frequency is consistent 
with the theoretical zero-power reactor transfer function. Accordingly, at low and high frequencies 
the neutron noise amplitude decreases with the increase of frequency, while at intermediate 
frequencies a plateau region can be identified where the neutron noise amplitude is approximately 
constant. The neutron noise phase resembles a bell-shaped curve, and it is also approximately 
constant at intermediate frequencies. The discrepancies between CORE SIM and the discrete 
ordinates solver change over the frequency range, although they are nearly insensitive in the plateau 
region. 

The discrepancies of the neutron noise amplitudes calculated with the 2 solvers at the location of 
the perturbation and at locations close to the perturbation, are relatively large and increase with 
frequency (see Figures 12 and 13). In particular, at the location of the neutron noise source, the 
relative differences for the fast amplitude vary from ~ -4% to ~ -11% over the frequency range, and 
the ones for the thermal amplitude vary from ~ -8% to ~ -24%. Since a strong gradient of the neutron 
flux occurs near the perturbation, a higher-order transport method may reproduce the phenomenon 
better than a diffusion-based model. In addition, the differences may be more notable at higher 
frequencies for which the propagating effect of the disturbance needs to follow faster fluctuations of 
the system properties. 

The discrepancies between CORE SIM and the discrete ordinates solver at locations of fuel cells far 
away from the perturbation, are relatively small and quite insensitive to frequency. For position 
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(25,10), the relative differences of the amplitude are below 1% for the fast group, and around 1.2 – 
1.6% for the thermal group (see Figure 14). Considering the highly localized effect of the 
perturbation, these discrepancies are mainly due to differences in the static calculations, which are 
not dependent on the frequency of the neutron noise source. 

When considering the neutron noise in the guide tubes, discrepancies between CORE SIM and the 
discrete ordinates solver are significant, but they are only weakly affected by the frequency of the 
neutron noise source. As shown in Figure 15, the relative differences in the guide tube (31,4) reach 
~12%. These large values are mainly related to the large discrepancies already existing in the static 
neutron flux because of the sharp heterogeneity introduced with the guide tubes, and thus are nearly 
independent from the frequency. 

The discrepancies between the neutron noise phases evaluated with CORE SIM and with the 
discrete ordinates solver are relatively small and constant in the plateau region. For this interval of 
frequencies, a phase close to 180 degrees is expected because the perturbation of the macroscopic 
neutron capture cross-section induces an out-of-phase response of the neutron flux. Outside the 
plateau region, the relative differences may be somewhat larger. At the location of the perturbation, 
they are found to be (see Figure 16): ~ -1% for the fast neutron noise and ~ -3% for the thermal 
neutron noise at the frequency of 0.01 Hz; and ~ -6% for the fast neutron noise and ~ -3.5% for the 
thermal neutron noise at the frequency of 100 Hz. When taking other locations, CORE SIM and the 
discrete ordinates solver provide very similar results. For example, the relative differences are 
approximately below 1.2% already in the fuel cell (17,18) which is just next to the perturbed one (see 
Figure 17). 

 

 

Figure 12: Relative differences between the 2 solvers at the location of the neutron noise source, for 
the amplitude of the fast (left) and thermal (right) neutron noise. 

 

 

    

Figure 13: Relative differences between the 2 solvers at the location (17,18), for the amplitude of the 
fast (left) and thermal (right) neutron noise. 
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Figure 14: Relative differences between the 2 solvers at the location (25,10), for the amplitude of the 
fast (left) and thermal (right) neutron noise. 

 

 

    

Figure 15: Relative differences between the 2 solvers at the location (31,4), for the amplitude of the 
fast (left) and thermal (right) neutron noise. 

 

 …  

Figure 16: Relative differences between the 2 solvers at the location of the neutron noise source, for 
the phase of the fast (left) and thermal (right) neutron noise. 
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Figure 17: Relative differences between the 2 solvers at the location (17,18), for the phase of the fast 
(left) and thermal (right) neutron noise. 

 

8.3 Comparison of the Chalmers Monte Carlo-based method with CORE SIM 

Two problems have been used to compare the Monte Carlo-based method discussed in section 5 
with the deterministic neutron noise diffusion solver CORE SIM [6]. The first problem is based on a 
homogeneous system and the second problem consists of a heterogeneous system.  

 

8.3.1 Homogeneous test case 

A one-dimensional slab of thickness 201 cm is considered, with vacuum boundary conditions 
applied. The static macroscopic cross-sections, point-kinetic data, and noise source definition are 
given in [20]. The neutron noise source is placed in the middle of the slab and consists of a 
perturbation of all the neutron cross sections, with a frequency of 0.0135 Hz. The choice of the 
frequency is such that both the real and imaginary parts of the noise are relevant. 

Figure 18 shows that the induced neutron noise predicted with the Monte Carlo-based method 
agrees very well with the CORE SIM solution. The local component of the neutron noise is 
particularly well reproduced. Some small deviation in the prediction of the global component can 
nevertheless be noticed, where the “buckling” of the amplitude of the global component is slightly 
different between the two solutions and where the slope of the phase of the global component also 
slightly differs in the thermal group. The maximum relative difference in amplitude is ~10%, whereas 
the maximum difference in phase is ~2 deg. 

 

 

Figure 18: Results for the homogeneous test case. All results were normalized to the same induced 
neutron noise in the fast energy group at the location of the noise source. 
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8.3.2 Heterogeneous test case 

A one-dimensional system made of 11 fuel pins, each pin being of 1 cm thickness surrounded by 
water, is defined, with vacuum boundary conditions applied. The spacing between each fuel pin is 
0.25 cm, whereas the spacing between the outer periphery of the outermost fuel pins and the 
boundary of the system is 0.125 cm. The static macroscopic cross-sections, point-kinetic data, and 
noise source definition are given in [20]. Again, the neutron noise source is placed in the middle of 
the slab and consists of a perturbation of all the macroscopic cross sections, with a frequency of 
0.159 Hz. 

As shown in Figure 19, the amplitude and the phase calculated with CORE SIM are reproduced by 
the Monte Carlo-based method. However, the Monte Carlo transport solution has a larger spatial 
variation on small scales, as compared to the diffusion-based CORE SIM solution. As for the 
homogeneous case, a slightly different slope in the phase of the induced thermal neutron noise is 
observed. The variation of the phase throughout the system is less than 0.6 deg and thus the 
observed differences may be considered negligible. 

 

 

Figure 19: Results for the heterogeneous test case. All results were normalized to the same induced 
neutron noise in the fast energy group at the location of the noise source. 

 

8.4 Comparison between neutron noise solvers using numerical benchmarks 
in a 2-D simplified UOX fuel assembly 

Neutron noise solvers developed in the CORTEX project have been compared using two neutron 
noise benchmarks. In the current section, these benchmarks are respectively referred to as exercise 
1 (simple noise source, see subsection 8.1.2) and exercise 2 (oscillating noise source, see 
subsection 8.1.2). The system is a simplified UOX fuel assembly whose nuclear data are generated 
with respect to 2 energy groups, and scattering is assumed to be isotropic. All the solvers, including 
the Monte Carlo ones, use the same set of pre-generated cross sections. 

The solvers used for the simulation of the 2 exercises are: the frequency-domain stochastic neutron 
noise solver in TRIPOLI-4® (section 6), the frequency-domain Monte Carlo neutron noise solver 
developed by Kyoto University (section 7), the frequency-domain deterministic solver NOISE-SN 
(the SN solver developed by Chalmers, section 2), the frequency-domain deterministic IDT lattice 
solver in APOLLO3® (section 3), the frequency-domain neutron noise diffusion solver CORE SIM+ 
[7, 37], and the time-domain finite-element diffusion solver FEMFFUSION [7, 38, 39].  

The quantities chosen for the comparison of the solvers are the neutron flux and the multiplication 
factor in the static configuration without perturbations, and the relative amplitude and phase of the 
neutron noise calculated in the two exercises. For illustration, the results for the thermal energy group 
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are taken along the main diagonal of the fuel assembly that crosses the perturbed fuel pin. The 
TRIPOLI-4® simulations are selected as the reference. The detailed discussion of the analysis can 
be found in [40].  

 

8.4.1 Static neutron flux 

The calculated values of the multiplication factor of the static configuration are summarized in Table 
1. The KU Monte Carlo solver, the IDT solver embedded in APOLLO3®, and NOISE-SN predict 
values close to the multiplication factor obtained from TRIPOLI-4®. The diffusion-based codes 
CORE SIM+ and FEMFFUSION exceed the reference by more than 1000 pcm. The thermal static 
neutron flux and the relative differences between the solvers and TRIPOLI-4® are shown in Figure 
20. The relative differences associated with the KU Monte Carlo solver and with the deterministic 
higher-order transport methods are between ± ~1%. The relative differences associated with the 
diffusion solvers are between +2% and -6% for the thermal neutron flux. The larger discrepancies 
between the diffusion and Monte Carlo calculations are found in the water holes and in the middle 
of the moderator regions between the fuel pins. Although not included in the plots, the standard 
deviations associated with the Monte Carlo results are sufficiently small to ensure the accurate 
estimation of the neutron fluxes. 

 

Table 1: Multiplication factor, comparison between solvers over the static configuration. 

Solvers 𝑘𝑒𝑓𝑓 Difference [pcm] 

TRIPOLI-4® 0.99912 ± 8 pcm Reference 

KU Monte Carlo solver 0.99919 ± 7 pcm 7 

APOLLO-3® 0.99784 -128 

NOISE-SN 0.99996 84 

CORE SIM+ 1.01309 1397 

FEMFFUSION 1.01367 1485 

   

 

Figure 20: Thermal static flux (left) and relative differences with respect to TRIPOLI-4® (right), along 
the main diagonal of the fuel assembly crossing the perturbed fuel pin. 

 

8.4.2 Neutron noise 

For the neutron noise calculated in the two exercises, the Monte Carlo solver developed by Kyoto 
University, the IDT solver embedded in APOLLO3®, and NOISE-SN are in good agreement with 
TRIPOLI-4®. The differences estimated with respect to TRIPOLI-4® are between ±2% for the 
relative noise amplitude of the thermal group (see Figures 21 for exercise 1 and Figure 22 for 
exercise 2). 
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For the diffusion-based solvers, the largest discrepancies are found close to the neutron noise 
source, where the diffusion approximation is expected to be less reliable. In exercise 1, the maximum 
relative differences between CORE SIM+ and TRIPOLI-4® are about -9% for the relative thermal 
noise amplitude (see Figure 21). In exercise 2, the biggest relative differences between CORE SIM+ 
and TRIPOLI-4® are about -8% for the relative thermal noise amplitude (see Figure 22). The solver 
FEMFFUSION is used only in the second exercise and its relative differences with TRIPOLI-4® can 
reach about -13% in the thermal group (see Figure 22). Far from the noise source, the diffusion 
calculations are consistent with the results of the higher-order transport methods. 

All the solvers predict very similar values for the phase of the noise. For example, the case of 
exercise 2 is considered; the thermal noise phase is shown in Figure 23. The relative differences 
with respect to TRIPOLI-4® are between ±0.15% for all the frequency-domain solvers. 
FEMFFUSION gives values with a slight shift (around -0.25%). 

In the Monte Carlo simulations, uncertainties for the real and imaginary parts of the neutron noise 
are estimated separately via independent replicas. Because of the non-linear and highly correlated 
transformations required, a precise uncertainty for the amplitude and the phase cannot be assessed. 
However, in view of the high degree of statistical convergence on the real and imaginary parts, the 
results provided for the amplitude and phase are assumed to be sound and reliable. 

 

 

Figure 21: Exercise 1; relative thermal noise amplitude (left) and relative differences with respect to 
TRIPOLI-4® (right), along the main diagonal of the fuel assembly crossing the perturbed fuel pin. 

 

 

Figure 22: Exercise 2; relative thermal noise amplitude (left) and relative differences with respect to 
TRIPOLI-4® (right), along the main diagonal of the fuel assembly crossing the perturbed fuel pin. 
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Figure 23: Exercise 2; thermal noise phase (left) and relative differences with respect to TRIPOLI-4® 
(right), along the main diagonal of the fuel assembly crossing the perturbed fuel pin. 

 

9 Conclusions 

In the CORTEX project, Monte Carlo and deterministic higher-order transport methods have been 
used to develop solvers and procedures for neutron noise simulations, i.e.: 

 

• The deterministic solver NOISE-SN, using a discrete ordinates method (Chalmers University 
of Technology) 

• The deterministic IDT lattice solver embedded in APOLLO3® for frequency-domain 
calculations (CEA) 

• The deterministic APOLLO3® IPK solver for time-domain calculations (CEA) 

• A stochastic solver in the Monte Carlo code TRIPOLI-4® for frequency-domain calculations 
(CEA) 

• A procedure for frequency-domain calculations using a stochastic code (Chalmers University 
of Technology) 

• A Monte Carlo solver for frequency-domain calculations (Kyoto University) 

 

These solvers have been applied to various numerical neutron noise problems in which localized 
fluctuations of macroscopic neutron cross sections are prescribed. The comparisons between them 
show similar results and the correct implementation of the algorithms. 

In the comparisons between the stochastic solvers, the higher-order deterministic solvers, and the 
diffusion-based solvers such as CORE SIM+ and FEMFFUSION, a relatively good agreement is 
found, although diffusion theory may be less accurate close to the neutron noise sources and in 
regions characterized by strong variation of the material properties. 

Further work will be necessary to test the solvers when simulating neutron noise induced by 
mechanical vibrations.  
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