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ABSTRACT 
 

On-line monitoring (OLM) of nuclear reactors (NRs) incorporates – among other priorities – the 

concurrent verification of (i) valid operation of the NR neutron detectors (NDs) and (ii) soundness 

of the captured neutron noise (NN) signals (NSs) per se. In this piece of research, efficient, timely, 

directly reconfigurable and non-invasive OLM is implemented for providing swift – yet precise – 

decisions upon the (i) identities of malfunctioning NDs and(ii) locations of NR 

instability/unexpected operation. The use of Harmony Theory Networks (HTNs)is put forward to 

this end, with the results demonstrating the ability of these constraint-satisfaction artificial neural 

networks (ANNs) to identify(a) the smallest possible set of NDs which, configured into (b) the 
minimum number of 3-tuples of NDs operating on(c) the shortest NS time-window possible, 

instigate maximally efficient and accurate OLM. A proof-of-concept demonstration on the set of 

eight ex-core NDs and corresponding NSs of a simulated Pressurized Water nuclear Reactor 

(PWR) exhibits(i) significantly higher efficiency, at(ii) no detriment to localization accuracy, when 

employing only (iii) half of the original NDs and corresponding NSs, which are configured in (iv) 

a total of only two (out of the 56 combinatorially possible)3-tuples of NDs. Follow-up research 

shall investigate the scalability of the proposed methodology on the more extensive and 

homogeneous (i.e. “harder” in terms of ND/NS cardinality as well as of ranking/selection) dataset 

of the 36 in-core NSs of the same simulated NR. 
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cross-correlation CC 
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on-line monitoring OLM 
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1. INTRODUCTION 
 

1.1. On-Line Monitoring of Nuclear Reactors 
 

Ever since the early installation and operation of nuclear reactors (NRs), on-line monitoring 

(OLM) has received special attention from nuclear engineering scientists, researchers as well as 
NR operators [1]. To date, OML covers the entire spectrum of safety  

 

 from “operational”, concerning the sustainable, controllable and maximally efficient 

chain-reaction with thermal neutrons from – and on – fissile material [2], 

 to “radiation protection”, concerning safety of the NR personnel at the local level, as well 
as ecological wellbeing of the flora, fauna and environment at the global level [3]. 

 

OLM of NRs encompasses the prompt processing and analysis of neutron noise (NN) 

signals(NSs) – as these are captured by NN detectors (NDs) –for ensuring the timely, non-
invasive, consistent, reliable and (ideally) directly reconfigurable identification (as well as 

resolution) of various NR problems, including 

 
(a) failing equipment (e.g. instrumentation, sensors, transmitters, NDs) and 

(b) deviating-from-normal and/or inconsistent operation (e.g. aberrant coolant flow and/or 

temperature measurements). 
 

Essential information on instrument calibration and verification, as well as on 

instrumentation/equipment/plant condition monitoring, can be found in [4-9]. Additionally, two 

relevant – complementary to one another, yet each comprehensive in its own focus and domain of 
interest – reviews of the literature on human/operational and computational intelligence (CI)-

based OLM appear in [10] and [11], respectively.  
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1.2. Organization of Presentation 
 

The remainder of this piece of research is organized as follows:  

 

 Section 2 introduces the state-of-the-art relating to NR/OLM. A pertinent selection of 
innovative OLM approaches is presented, which (i)epitomizes the extensive range of 

preferred methodologies for tackling the multitude of OLM issues that may arise during NR 

operation and (ii) underscores the interplay between ND-/NS-derived information and 
custom-made OLM decisions/derivations/solutions. Subsequently, the motivation for the 

proposed methodology, as well as the advancement offered by the implemented encoding of 

the problem variables and constraints, is introduced in this Section.  

 

 The NR set-up and characteristics of/dependencies between the out-of-coreNDs/NSs (ex-
NDs/ex-NSs) of the dataset of [12] (which has been used for demonstrating the proposed 

OML approach) are detailed in Section 3.  

 

 Section 4 provides a comprehensive introduction to the HarmonyTheory Network (HTN) 
[13] and its custom-made implementation for the concurrent selection of the minimal number 

of a) ex-NDs per se and b) 3-tuples [14] of the ex-NDs of a), which - combined with c) the 

shortest possible (of length 256) sliding time-window of the corresponding NSs – implement 
consistent, global, prompt and precise, non-invasive and directly reconfigurable OLM. 

Problem decomposition and gradual upscaling is implemented for endowing NR operation 

with computational (space- and time-) efficiency, at no compromise to the optimality of the 

returned ex-ND configuration/solution.The advantages of the proposed approach are further 
supported by a critical presentation of the obtained results. 

 

 Section 5concludes the presentation by summarizing the main characteristics and innovation 

of the proposed approach, reporting on the importance of the findings, drawing key-
conclusions and stating future extensions to the presented research. 

 

2. NUCLEAR REACTORS & ON-LINE MONITORING  
 

2.1 State-of-the-Art  
 

The extensive range of NR operation-related prerequisites and restrictions/controls/ constraints 
has resulted in  (I) a multitude of nuclear protection guidelines, initiatives and standards,(II) 

primary information and reviews of the state-of-the-art on multi-sensor coordination (e.g. [15-

16]) as well as on modelling, estimation and control (e.g. [17]). Over the last decade, both 

research and development have delved into the implementational characteristics and properties 
that are necessary for rendering OLM consistently correct, maximally efficient, robust to missing 

– yet sensitive to erroneous– information, as well as capable of swift reconfiguration whenever 

deemed necessary. 
 

A selective – yet representative – collection of pieces of research which employ, validate and 

co-ordinate sets of collaborating NDs (via the corresponding NSs) is provided next, with each 

implementation accompanied by a brief exposition of problem statement, execution and novelty: 
 

 Principal component analysis (PCA) has been employed in [18] for mathematically 
modeling the relationships that hold between topologically related sets of self-powered NDs, 

culminating into an operational “detection & isolation scheme” for four types of simulated 

faults (bias, drifting, precision degradation and complete failure). 
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 A hybrid scheme, combining (i) Kalman filtering for estimating prompt neutron flux 

variations and(ii) the generalized likelihood ratio for detecting and diagnosing ND faults, 
has been tested successfully in [19], demonstrating robust on-line correction of the step 

change on simulated neutron flux data concurrently implementing moving control-rods and 

fluctuating power demands.  

 

 Three (the observation, dependency and state) sub-models of a sensor model have been 
implemented in [20] for effectively co-ordinating, as well as integrating, competitive and/or 

disparate pieces of NS-derived information which include uncertainty in the ND 

observations. 
 

 The combination of recurrent PCA and k-means clustering of NDs has been put forward in 

[21] for the consistent detection and severity evaluation of failing NDs. 

 

 A CI/fuzzy-logic-based decentralized multi-sensor detection system with reduced energy 
demands [22]has been found successful in attaining a superior level of detection accuracy. 

 

2.2 Problem Statement & Aims - Motivation for the Implemented Research – 

Problem Representation - Proposed Advancement in the State-of-the-Art 
 

The validation of (a) correct operation of the in- and ex-core NDs (in-NDs and ex-NDs, 
respectively) [1] and (b) soundness of the captured NSs (in-NSs and ex-NSs, respectively) per se, 

constitutes a prerequisite of successful OLM which is based on the agreement of the measured 

NSs with expected reference values2, salient characteristics of signal evolution and inter-signal 
comparisons. Further to rendering OLM completely automated as well as autonomous, an 

additional major motivation is the advancement of the state-of-the-art by also maximizing the 

time- and space-efficiency of OML, an endeavour that is instigated in this piece of research via 
the selection and subsequent utilization of 

 

(i) the minimal set of NDs and 

(ii) the minimum number of 3-tuples3 of “collaborating” NDs [14] (derived from the minimal 
set of(i)) which is required for consistently implementing OLM over (I) the entire NR, (II) the 

full spectrum of possible NR operating modes (e.g. footnote 2), (III) the extensive variety of 

coolant flow-regimes(e.g. bubbly, churn), and 
(iii) the shortest sliding time-window that is capable of on-line (real-time) –yet consistent – 

capture of the time-evolution of the NSs which pertain to the selected 3-tuples of NDs of (ii). 

 
The concomitant satisfaction of (i)-(iii) exposes the minimal set(s)4 of NDs (and corresponding 

NSs) which is/are necessary – as well as sufficient – for accomplishing accurate, efficient as well 

as swift, non-invasive and directly reconfigurable NS-derived information processing and 

custom-made problem resolution over the entire NR and the full spectrum of possible NR 
operating/coolant flow-regime conditions (as described in point (ii) of this Section), with the 

optimum 3-tuple configurations of NDs/NSs being based on the current information acquired 

                                                
2the ranges and trajectories of the signals are fully determined by NR construction (the NR transfer function) for each 
mode of operation (start-up, shut-down, stand-by, transient vs. steady-state etc.) as well as coolant flow-regime 
conditions  
3 it has been shown in [12] that 3-tuples of appropriately selected in-NDs are necessary as well as sufficient for the 
concurrent detection of erroneous in-NSs and/or malfunctioning in-NDs of the 3-tuple 
4the NDs/NSs of these sets may well be distinct over different modes of NR operation as well as location of instability, 
in order to better capture the phenomena under development (also see footnote 2) 
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directly, as well as exclusively, from the NSs in the form of CCs, on-line observed NS deviations, 
inter-signal comparisons etc. 
 

3. DATA CHARACTERISTICS AND PROBLEM ENCODING 
 

3.1. Dataset Description 
 

The data used for demonstrating the proposed approach constitutes the complete set of eight ex-

NSs which have been collected by the corresponding ex-NDs of the pressurized-water NR (PWR) 
described in [12]. The special interest in ex-NSs – rather than in the 36 in-NSs of the same 

dataset which has been used for demonstrating the 3-tuple configuration of [14]–is based on the 

following criteria: 

 
(a) on the one hand, the relatively small number of ex-NDs allows the 

implementation/evaluation of a proof-of-concept study concerning the application of the 

proposed approach to the entire set of ex-NDs of [12], which can then be transferred to other, 
more extensive, sets of in- as well as ex-NDs; 

(b) on the other hand, the lack of the high frequency component5 between/across ex-NDs renders 

OLM significantly more challenging in terms of timeliness and validity of response, 
especially when compared to in-NDs during rapidly evolving phenomena [3]; 

(c) as a result of (b),the cross-correlation (CC) coefficients between ex-NSs (shown in Table 1) 

are significantly lower and more varied than those between the in-NSs of the same dataset, 

thus placing further demands as far as (i) the concurrent satisfaction of the combination of 
pertinent sources of NS information and (ii) the processing of considerably more 

requirements, are concerned;  

(d) it is important to determine whether, how and with what gain in terms of computational 
complexity, the 3-tuple configuration can be applied – successfully as well as confidently – 

to the full set of ex-NDs and ex-NSs, especially given the comparatively low CC-values 

between ex-NSs. 
 

Table 1. The CC coefficients between the set of eight ex-NS of [12], revealing three clusters of 

“sufficiently” correlated – i.e. collaborating – NDs and demonstrating two overlapping parts 

between pairs of neighbouring clusters.  

 

 

 

                                                
5 “… the high frequency component of the neutron noise allows [facilitates] the detection of phenomena in the near 
vicinity of an in-core detector” [3] 

 

ex-NS 1 2 3 4 5 6 7 8 

1 1.0000     0.9974     0.9345     0.9353     0.5966     0.5926     0.5756 0.5654 

2 0.9974     1.0000     0.9530     0.9553     0.6435     0.6418     0.6233     0.6157 

3 0.9345     0.9530 1.0000 0.9989     0.8179     0.8132     0.7994     0.7886 

4 0.9353     0.9553     0.9989     1.0000     0.8174     0.8158     0.7992     0.7916 

5 0.5966     0.6435     0.8179     0.8174     1.0000     0.9973     0.9993     0.9956 

6 0.5926     0.6418     0.8132     0.8158     0.9973     1.0000     0.9969     0.9988 

7 0.5756     0.6233     0.7994     0.7992     0.9993     0.9969     1.0000     0.9970 

8 0.5654     0.6157     0.7886     0.7916     0.9956     0.9988     0.9970    1.0000 
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3.2. Dataset Analysis – Clustering-Derived Assumptions and Problem-Dependent 

Constraints 
 
As can be observed in Table 1, the application of a “threshold” of 0.8 to the CC values between 

all the pairs of the eight ex-NSs reveals three pair-wise overlapping clusters of “sufficiently” 

correlated ex-NSs, with NS_cluster1, NS_cluster2 and NS_cluster3 comprising ex-NS1 to ex-

NS4, ex-NS3 to ex-NS6 and ex- NS5 to ex-NS8 (coloured red, blue and green), respectively, as 
well as two overlapping areas (coloured darker shades of red and green, respectively). 

 

In theory and, since all the pairs of ex-NSs belonging to the same cluster demonstrate similar 
behaviour, any such pair could be used for the consistent prediction of every other ex-NS of the 

same cluster. However, the criterion of “sufficiently high” CC values is not adequate per se, as 

explained in the following remark and accompanying example which demonstrates the 
importance of implementing ex-NS/ex-ND selection beyond values and thresholds alone, thereby 

further substantiating the rationale behind/necessity for the 3-tuple methodology:  

 

 As can be derived from Table 1, the selection of ex-NS2 is “preferable”6 to that of ex-NS1 

as the CC values of ex-NS2 with the remaining ex-NSs (ex-NS3 through to ex-NS8) are 
higher than those of ex-NS1, with the same observation holding for ex-NS4 over ex-NS3, 

ex-NS5 over ex-NS6 and ex-NS7 over ex-NS8.  

 Even so, such an (purely CC-value based) selection of ex-ND2, ex-ND4, ex-ND5 and ex-

ND77 does not allow the implementation of valid ex-NS/ex-ND monitoring, as not all the 
ex-NDs of each of these 3-tuples belong to the same cluster, resulting innone of the {ex-

NS2, ex NS4, ex-NS5} or {ex-NS4, ex-NS5, ex-NS7} 3-tuples satisfying the pairwise 

“CC>0.8” requirement (Table 1). 
 

3.3. Problem Representation/Encoding 
 

According to the aforementioned criteria and requirements of sufficient CCs between ex-NSs for 

the purposes of OLM, only these 3-tuples of ex-NSs which demonstrate values exceeding 0.8 for 

all (three) of their pairwise-derived CCs are considered operational and – thus – only these are 
encoded in the present implementation.  

 

Optimization is accomplished in a divide-and-conquer fashion, expressed as the joint 

utilization of the combination of the minimum possible: 
 

 number of 3-tuples of “collaborating” ex-NDs in the manner demonstrated in [14], 

 number of sufficiently (and, ideally, as highly as possible) correlated ex-NSs per se, which – 

configured into 3-tuples of NDs/NSs – are capable of monitoring the entire area of interest 

and 

 time-step of 1 which, combined with a statistically adequate time-window (of 256 for the 
present dataset), guarantees the on-line, efficient and robust concurrent identification of ex-

ND- (as well as of ex-NN/ex-NS-) related NR faults.  

 
Problem decomposition and gradual upscaling is implemented for endowing NR operation 

with computational (both space- and time-) efficiency, at no compromise to the optimality of the 

returned ex-ND configuration/solution.  

 

                                                
6 in the sense that it is more highly correlated with the proximal ex-NSs and, thus, more appropriate for performing ex-
NS/ex-ND validity checks at the vicinity of the corresponding 3-tuples 
7as the ex-NDs corresponding to the ex-NSs with the highest correlations with the other NSs 
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4. HARMONY THEORY NETWORK CONSTRUCTION/PROBLEM ENCODING 

FOR THE IMPLEMENTATION OF ON-LINE MONITORING 
 

4.1. Harmony Theory Networks 
 

The HTN [13] constitutes a semantically constructed8 two-layer artificial neural network (ANN) 
architecture which is adept at optimising under constraints (e.g. [23-24]). Instead of training, the 

problem is mapped directly to the nodes and connections of the HTN during construction in such 

a manner that the (semantic, problem-specific) collective compatibility of the activation values 

between connected nodes of the two layers quantitatively expresses the degree of 
“harmony”/fitness9 of the HTN state, as this is calculated based on the satisfaction of the 

constraints dictated by the problem/data per se and encoded in the HTN connections between the 

two HTN layers. The main characteristics of HTN construction and operation for OLM are 
briefly defined here: 

 

 The lower HTN layer comprises the “representational feature” nodes (RFs), which encode 

the problem-related information at the desired/appropriate level of description/ encoding. In 
the present case, each RF stands for a 3-tuple of NDs which collects information (a) from the 

corresponding 3-tuple of NSs, as well as (b) from every other “sufficiently” (>0.8) 

correlated10 NS of the same cluster(s) as the given NSs of the 3-tuple, in order to determine 

the expected/anticipated values and trajectories of as many NSs as possible and, 
consequently, to be able to further provide reliable decisions upon normal operation of the 

corresponding NDs of the 3-tuple per se. Each RF can acquire one of two states, namely +1 

(active) if the encoded 3-tuple of NDs reflects both valid ND operation and agreement in the 
evolution of the corresponding 3-tuple of NSs, or -1 (inactive) if either (or both) of valid ND 

operation and agreement in the evolution of the 3-tuple of encoded NSs cannot be 

established. 

 

 The upper HTN layer comprises the knowledge atoms (KAs), with each KA encoding a NS 
of the present dataset and acquiring one of two states, +1 (active) if the NS represented by the 

given KA can be consistently monitored by at least one 3-tuple of NDs encoded ina 

connected as well as currently active RF of the lower layer, and 0 if monitoring of the given 
NS cannot be established. Following HTN settling/convergence, the set of active KAs 

represents the maximal set of mutually compatible NSs that can be (i) successfully monitored 

by at least one 3-tuple of NDs and (ii) validated as far as anticipated/correct NR operation 
(encompassing both ND functionality and NS monitoring) is concerned. 

 

 The HTN connections are – by construction – bidirectional, symmetric and strictly limited 

between RFs/NDs and KAs/NSs; additionally, for the problem-at-hand they are exclusively 

positive, with the weights of all the connections emanating from the same KA being 
normalized as well as equal to each other (as is customary in HTNs), thereby encoding the 

reinforcing relationships between connected RF/KA pairs via: 
 

a) Direct monitoring of any given NS (encoded in a KA) by each RF which contains (in its 3-

tuple of encoded NDs) the ND corresponding to the encoded NS. This NS/ND relationship 

                                                
8in the sense that the nodes, the connections between nodes as well as the connection weights are assigned in a 
meaningful (expressive of the problem givens and constraints between givens), mathematical (predicate-logic- 
&normalization-based) manner 
9i.e. compatibility between the activation values of connected HTN nodes of the two layers (as the HTN architecture 
does not allow within-layer connections) 
10 in which case, “sufficient” (>0.8) CC with at least two of the NSs of the corresponding 3-tuple of NSs is required 
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is implemented in the HTN via positive, reinforcing connections between the KAs and the 

relevant RFs (shown as fine black lines in Fig.1). 

 

b) Indirect monitoring of any given NS (encoded in a KA) by each RF which does not contain 

(in its 3-tuple of encoded NDs) the ND corresponding to the encoded NS, yet contains at 

least two NDs that belong to the same cluster as the corresponding ND. This NS/ND 

relationship expresses the capability of the NDs of the 3-tuple to “indirectly” – yet securely 

– monitor and validate the given NS. Shown in Fig. 1 as bold red lines, these connections 

represent the transitive, “propagating” relationships between every KA and each connected 

RF that contains a 3-tuple of NDs that monitors at least two NSs from the same cluster as 

the given NS.  

 
 

Fig. 1. HTN encoding of the (a) 12 sufficiently correlated (>0.8) ND 3-tuples in the RFs 

of the lower layer, (b) eight captured NSs in the KAs of the upper layer, (c) compatibility 

between the 3-tuples of sufficiently correlated NSs which can be used for deciding upon 

expected values and shapes of the NSs  

 
The fine black lines (representing direct monitoring) between the nodes of the two layers of the 

HTN show three connections for the “exterior” NSs (1, 2, 7 and 8, corresponding to KAs 1, 2, 7 
and 8, respectively) and six for the “interior” NSs (NSs 3, 4, 5 and 6, corresponding to KAs 3 

though to 6, respectively). On the other hand, the bold red lines (representing the indirect 

connections) amount to three and four for the “exterior” and “interior” NSs, respectively. 

 

 The HTN fitness function quantitatively expresses the “quality” of each HTN state (set of 

activation values over the entire sets of RFs and KAs), which - for the problem-at-hand - is 

implemented at two levels of optimization: 

a) The KA-based level quantitatively expresses the “quality” of each HTN state in terms of 

the number of active KAs, per se, thus expressing the degree/level of compatibility 

between the active nodes of the two layers, and conveying the collective ability of the set 

of active RFs (3-tuples of NDs) to monitor as well as to verify as many as possible (and, 

ideally, all) of the NSs; 

b) The RF-based level: in case of “ties” in (a), i.e. if more HTN states than one exist with the 

same maximum number of active KAs, the HTN state with the smallest number of active 

RFs is selected. Furthermore, if the same total number of 3-tuples of NDs is employed by 

more than one “best” solutions, the total number of the NDs per se (which are encoded in 

the active RFs of these solutions) are compared and the HTN state representing the smallest 
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possible number of (i) 3-tuples of NDs as well as (ii) NDs per se, is selected; in the highly 

unlikely case where more than one such solutions co-occur, thresholding based on the 

lowest CC value between NSs belonging to the tied solutions is implemented for selecting 

the optimal configuration of NDs and 3-tuples of NDs. 

The HTN operation characteristics for the present problem include (i) the elementary 
advancement (by 1) of the sliding time-window along the data and, consequently, on the time-

window employed for the calculation of the CC matrix, thus guaranteeing timely and robust - yet 

still sensitive - responses to changes within the NR (including changes in the NSs and/or the NDs 
per se); (ii) the application of simulated annealing (SA) [25] to the HTN, employed at each 

instance of the sliding time-window as follows. The HTN is initialized with the assignment of 

randomly assigned ±1 values to the RFs at an inaugural “high” value of the temperature 
parameter T of the HTN. The propagation of the assigned RF values to the connected KAs and 

the calculation of the total activations of the KAs is followed by thresholding for extracting the 

active KAs; this threshold is gradually raised (as T is lowered) during the SA process, such that 

one of the best – of maximal harmony – HTN state(s) is converged upon11. SA is appropriate for 
this task (and problem representation), as the occasional convergence of the HTN upon a sub-

optimum problem-state as the current solution for a given instance of the sliding time-window 

can be tolerated, as it is smoothed over/corrected by the previous and next HTN decisions. It 
should be mentioned, nonetheless, that a careful investigation and coordination of the HTN 

parameters and a conservative scheme of decrementing the T parameter during HTN settling is 

capable of minimizing premature, as well as imperfect, convergence to a non-optimum solution 

by initially considering the entire problem space and gradually focusing upon the more – and, 
eventually most – “promising” sections of the problem space, thus – as a rule – converging upon 

a state of maximal harmony.  

 

4.2. Harmony Theory Network Implementation via Step-Wise Optimization in 

Terms of Accuracy and Efficiency - Advancements, Advantages and 

Limitations 
 

The implementation of a serial (incremental) procedure of 3-tuples of NDs is not applicable to the 
present problem, as each sequentially selected next 3-tuple of NDs – even if “best” per se – far 

from guarantees the attainment of an optimal final solution. As, however, the implementation of 

combinatorial optimization does not necessarily scale up well (in terms of time complexity as 
well as of successful convergence) to problems of practical interest, an alternative problem-

decomposition methodology involving a sequence of HTNs (at most as many as the monitored 

NSs) has been implemented and successfully tested for the problem-at-hand. The implemented 
HTNs may run either sequentially or in parallel (depending on the aim and/or time/space-

computational complexity requirements/potential of the problem encoding), with each (the ith, 

i=1, 2, …, 8) HTN (I) being set so as to allow for exactly i active RFs (i.e. i=1, 2, …, 8 3-tuples 

of NDs) for the maximization of H and (II) the SA settling procedure of each HTN, in turn, being 
automatically adapted according to this added constraint, thus configuring the activation values of 

the nodes of both layers such that the RFs that are converged upon by the HTN reveal the 3-

tuples of NDs which maximize H for the specific value of i. It is also important that such an 
implementation provides important information on the landscape of the problem space and, thus, 

on the interconnections and inter-constraints that apply between NSs (as well as between NDs) at 

different stages of OLM in terms of the numbers and identities of successfully monitored NSs by 
specific 3-tuples of NDs. 

 

                                                
11in a probabilistic sense, where the probability of accepting an “inferior” HTN state during operation diminishes along 
with the drop in T 
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Table 2. A demonstration of HTN fitness of the optimal HTN-derived selection of NDs/NSs  

(highlighted 345-456 3-tuples) for successful OLM. All the alternative pairs of 3-tuples  

using the same ex-NDs/NSs (3, 4, 5 and 6) have been also tabulated for demonstrating  

the variation in HTN fitness that is reached by each such pair of 3-tuples, hence  

confirming HTN operation and settling to the HTN state of maximum H as well as 
 highlighting the differences in H observed over the different  

combinations of pairs of 3-tuples. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
The settling procedure of the sequential HTN reported in this piece of research is described 

next. For the first iteration, the HTN SA-based “settling” procedure is initialized by imposing the 

activation value of +1 to a single, randomly selected, RF (i.e. a single 3-tuple of NDs of the lower 

level); the selected RF propagates its activation value to the connected KAs, the activation value 
of each KA is calculated and thresholded according to the binarization principle of HTN 

activation for the nodes of both HTN layers, and the entire set of activations is propagated back 

to the nodes of the lower layer, followed by roulette-wheel [26] selection of a single RF, which is 
assigned the activation value of 1, and with all the other RFs being assigned activation values of -

1 (inactive RFs). The process of limiting the number of active RFs to 1 is repeated according to 

the HTN settling procedure described in Section 4.1., whereby convergence upon (one of) the 3-
tuple(s) of NDs that monitor(s) the most NSs is achieved. If this number equals the total number 

of NSs, the procedure terminates and the 3-tuple of NDs is returned. Otherwise, this procedure is 

repeated from scratch, each time  

 

 incrementing (by 1) the number of active 3-tuples of NDs (RFs) that are to be used 
concurrently for performing the second (or next) HTN iteration and  

 retrieving the pair, triplet etc. (for the second, third iteration, etc., respectively) of 3-tuples 

of NDs of the lower HTN level which maximizes the number of active KAs (i.e. monitored 

NSs), 
 

pair of  

CCs            

ND/NS  

between     
3-tuples of 

NSs 

345-346 345-356 346-356 345-456 346-456 356-456 

34 0.9989 

(×2) 

0.9989 0.9989 0.9989 0.9989 - 

35 0.8179 0.8179 

(×2) 

0.8179 0.8179 - 0.8179 

36 0.8132 0.8132 0.8132 

(×2) 

- 0.8132 0.8132 

45 0.8174 0.8174 - 0.8174 

(×2) 

0.8174 0.8174 

46 0.8158 - 0.8158 0.8158 0.8158 

(×2) 

0.8158 

56 - 0.9973 0.9973 0.9973 0.9973 0.9973 

(×2) 

HTN 

fitness   ϵ[0 

1] 

0.7174 

 

0.7332 

 

0.5336 

 

0.7997 

 

0.6001 0.6160 

occurrence 

(%) 
6.4 11.2 - 81.2 - 1.2 

250 trials 16 28 0 203 0 3 
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up until all the NSs are monitored by the set of selected 3-tuples of NDs, in other words, all the 
KAs of the HTN are assigned activation values of +1) for the current number – and identity – of 

3-tuples corresponding to the active RFs. The transparent construction of the HTN allows 

monitoring of the settling process as well as direct identification of (a) the 3-tuples of NDs 

(active RFs) and (b) NSs (active KAs) that optimise the computational (time- as well as space-) 
efficiency of OLM, where selection is based on the activations of the set of RFs prior to 

thresholding. 

 

 

 
 

Fig. 2. Relative (%) (a) HTN fitness and (b) frequency of HTN settling of the pairs of 3-

tuples of NDs/NSs comprising NDs/NSs 3, 4, 5 and 6 over 100 trials (shown in Table 2). 

 

For the present dataset, the implementation and settling procedure of the HTN terminates after 
two operation/settling iterations: the 3-tuple selected at the first HTN/iteration is identified as{ex-

NS3,ex-NS4, ex-NS5}, which maximises the CC values between the selected NSs for time-step 1 

and sliding time-window of 256. The second iteration/HTN converges upon the second 3-tuple of 

NSs, resulting in {ex-NS3, ex-NS4, ex-NS5} and {ex-NS4, ex-NS5, ex-NS6}). This 
configuration minimizes the number of involved NSs/NDs to 4, while maximizing both the 

coverage over all eight NSs and the CCvalues within the two 3-tuples. 

 
Table 2 presents a comparison of all the pairs of 3-tuples which contain the same NDs/NSs (3, 4, 

5and 6) as the optimal – as well as prevalent (81.2%) – HTN solutions, i.e. are “neighbours” to 

the optimal k, i.e. in this case the 3-tuple of the first HTN is also included in the optimal 
configuration of 3-tuples of the second HTN solution. As can be seen, the second-best choice 

{ex-NS3, ex-NS4, ex-NS5} and {ex-NS3, ex-NS5, ex-NS6} has a slightly lower H (by 6.65%), 

yet convergence upon this configuration of NDs/NSsis more than seven times less likely to occur 

than it is for the best configuration, thus further demonstrating the ability of the proposed HTN 
methodology to magnify– and, thus, distinguish between –small differences in HTN fitness. It is 

indicative that the identity of the selected NDs/NSs is the same in both configurations, with the 

superiority of the former pair of 3-tuples amounting to 0.0042x2(normalized difference between 
the two sets of RF activation values). 

 

In a complementary fashion, Fig. 2 illustrates the % (relative) (a) HTN fitness and (b) frequency 

of HTN settling, of all the possible configurations of pairs of 3-tuples resulting from NDs/NSs 3, 
4, 5 and6, revealing the magnification of H for small differences in CCs of pairs of involved NSs, 

with the optimal configuration being selected slightly more than 8 out of every 10 trials, and the 

remaining configurations appearing only occasionally, again in relation to their difference (in 
terms of H) with the optimal solution. 

 



152 Computer Science & Information Technology (CS & IT) 

5. CONCLUSIONS – FUTURE DIRECTIONS/EXTENSIONS 
 
The feasibility of creating an appropriately selected and fully operational minimal subset of 

sufficiently correlated ex-NDs employing the minimal time-window of 1 has been demonstrated 

on the set of eight ex-NDs and ex-NSs of [2]. Maximally efficient (with minimum response time) 

as well as accurate OLM of NRs is promoted, which is non-invasive and directly reconfigurable 
based on the characteristics and data-derived (e.g. statistical) properties of the NSs per se, 

encompassing (I) prompt detection of situations involving faulty NDs and/or NS anomalies, 

outliers or patterns indicating unexpected/abnormal operation etc. and (II) the accurate 
characterisation of NR irregularities in/deviations from expected operation. Moreover, the 

proposed methodology achieves the consistent (III) minimisation of the time- and space-

complexity of OLM. 
 
Further to a proof-of-concept, the results obtained from this investigation provide a directly 

implementable lower bound on the accuracy and consistency of operation of the proposed 

approach, especially in cases where (i) more NDs per se and/or (ii) more highly correlated NSs 
are available and/or (iii) longer time windows are implemented for the identification of 

phenomena of interest which evolve more gradually in time. It is also important that it remains 

possible – at any time – to (I) enrich the proposed OLM methodology with more NDs/NSs that 
are “sufficiently” correlated with the NS(s) of interest for expanding upon the initial findings 

derived from the reduced set of NDs, and/or to (II) exclude NDs/NSs which are redundant or 

have been detected as erroneous/faulty. 

 
Future research shall focus upon fine-tuning the proposed implementation for such phenomena as 

transients, transitions between flow regimes and other occurrences during NR operation, as well 

as on whether the same (or a similar) configuration and implementation can be applied to the 
significantly larger, yet more highly correlated, set of 36 in-core NDs/NSs of the same dataset of 

[10], where the significantly higher CCs between in-NSs are compensated by the significantly 

larger number of (36)NDs/NSs to be simultaneously considered and optimised. 
 

Demonstrating the feasibility of such an endeavour also paves the way for the hardware (H/W) 

implementation of maximally accurate as well as swift, automated decision-making upon the 

location(s) of NR instability and malfunctioning ND(s). 
 

The entire computing/programming of the signal processing and HTN simulations has been 

implemented in the Matlab environment [27]. 
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