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Motivation for developing CORE SIMplus

• Need for a solver for neutron noise applications

• Core monitoring

• Reactor diagnostics

• Experiment design

• The solver needs to be fast and flexible
• Modelling of all relevant noise sources

• Large datasets generation for Machine Learning training
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Useful features of CORE SIMplus

• The code capitalizes on CORE SIM 

• Frequency domain solver 

• Non uniform mesh

• Various numerical methods 

• Noise Green’s function generator 

• Matlab-based code
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Overview of the code
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Solving a noise problem
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Solving a noise problem: spatial discretization
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Solving a noise problem: noise source models

• All the models are built based on the XS fluctuations or arbitrary source terms
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Noise models in CORTEX:

❑ Absorber of variable strength

❑ Travelling perturbation

❑ Control rod vibration

❑ Fuel assembly vibration

❑ Core barrel vibration

𝑨𝑛𝑜𝑖𝑠𝑒𝚽𝑛𝑜𝑖𝑠𝑒 = 𝑺𝑛𝑜𝑖𝑠𝑒



Solving a noise problem: thermal absorber of variable
strength
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𝛿Σa,2 r, 𝜔 = Τ𝑐 2 × Σa,2,0 𝑟 𝛿(𝜔 − 𝜔0)

Σ𝑎,2(𝑟, 𝑡) = Σ𝑎,2,0(𝑟) + 𝛿Σ𝑎,2(𝑟, 𝑡)

𝛿Σ𝑎,2 𝑟, 𝑡 = 𝐴𝑠𝑖𝑛 𝜔𝑡 + 𝜙 = c × Σa,2,0(𝑟) 𝑠𝑖𝑛 𝜔𝑡 + 𝜙

𝑤𝑖𝑡ℎ 𝑐 ≪ 1. For the sake of simplicity 𝜙 = 0
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Solving a noise problem: travelling perturbation
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Solving a noise problem: control-rod vibration
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Solving a noise problem: fuel-assembly vibration
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Solving a noise problem: core-barrel vibration
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Noise Green’s function generator

❑ The red terms are computed once with the solver

❑ The blue terms are specified in a postprocessing stage

❑ The noise induced by different scenarios can be computed in the postprocessing stage

➢Using this method we have generated a ~2 TB dataset for WP3 and a ~5 TB dataset for WP4
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𝛿𝜙1(𝑟, 𝜔)
𝛿𝜙2(𝑟, 𝜔)

=

න 𝐺1→1 𝑟, 𝑟′, 𝜔 𝑆1 𝑟′, 𝜔 + 𝐺2→1 𝑟, 𝑟′, 𝜔 𝑆2 𝑟′, 𝜔 𝑑3𝑟′

න 𝐺1→2 𝑟, 𝑟′, 𝜔 𝑆1 𝑟′, 𝜔 + 𝐺2→2 𝑟, 𝑟′, 𝜔 𝑆2 𝑟′, 𝜔 𝑑3𝑟′



CORE SIMplus in CORTEX 

• Contributions to

• Generation of training data for Machine Learning (task 3.1.3, task 4.2.2)

• Simulation of COLIBRI experiments (task 2.2.2)

• Simulation of AKR experiments (task 2.2.1)

• Comparison with a Sn solver (task 1.3.3)

• Code-to-code benchmark (task 1.3.3)

• Uncertainty quantification (task 2.2.3)
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Summary

• CORE SIMplus is fast and flexible diffusion solver

• It can be used for reactor monitoring, diagnostics, experiment design

• Extensive use within CORTEX
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Practical session
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Workflow

• Simulation of CROCUS reactor and COLIBRI experiment
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CROCUS and COLIBRI model
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Working directory
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Input directory
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Input for criticality calculation



SETTINGS.m
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Run criticality calculation
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Results
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Input directory
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Additional input for noise calculation
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SETTINGS.m
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Run noise simulation
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CPSDs 

The script: 

1. loads the computed neutron noise

2. computes the relative neutron noise

3. computes the CPSDs between the detector locations using the formula: 

𝐶𝑃𝑆𝐷2,𝑖,𝑗 = 𝛿𝜙2,𝑖
𝑟𝑒𝑙 × (𝛿𝜙2,𝑗

𝑟𝑒𝑙)†
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Directory: CPSDs



CPSD results
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CPSD amplitude based on detector 5 
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CPSD phase based on detector 5 

as function of distance from noise source



Summary
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Thank you


