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Outline / Questions

• 1 ) Can we unfold? Classify and Localise?

• 2) Multiple Simultaneously 
Occurring Perturbation?

• 3) How can we Leverage Simulated
and Real Plant Measurements?



Problem Case

• We aim to unfold reactor transfer function to provide core diagnostics.
• Derivation of core perturbation characteristics to classify and locate its origin.

• Yet this is challenging due to the limited number of neutron detectors in 
western type reactors.

• We ask, can we use machine learning to successfully approximate the reactor 
transfer function?

• However, to effectively train ML algorithms large quantities of data are 
required.



Data Acquisition

• Real plant measurements are difficult to obtain, unlabelled, and anomalies 
are thankfully rare.

• As such it is beneficial to have alternative means to train our algorithms.
• Supervised Learning – Data where a known perturbation type and source is 

assumed.

• We utilise a diffusion-based core simulation tool to provide simulated 
training data that is both labelled and capable of producing any theoretical 
perturbation scenario.
• CORE SIM + (A. G. Mylonakis, P. Vinai, and C. Demaziere. “Numerical solution of two-energy-group neutron noise diffusion problems with fine spatial 

meshes.” Annals of Nuclear Energy,volume140, p. 107093 (2020).)



Data Prerequisites 

• CORESIM + produces neutron response to a induced perturbation in the 
frequency domain for the whole core volume. 

• Yet to align with real plant measurements we only use a small number of 
these readings to correspond to the neutron detectors (48 readings from 
the 32x32x32 simulated volume).

• There are 9 different perturbation scenarios, each being simulated for all 
theoretically possible origins =  Terabytes of Data !



Unfolding the Reactor Transfer 
Function
- Single Perturbation Classification and Localisation



3D Convolutional Neural Network (CNN)

• Given our goal is to determine the origin within a volume, it is desirable to 
train our network to learn spatial features of the response.

• We employed the use of 3D Convolutional Neural Networks (CNNs) to 
operate on the whole core volume.

• Convolutional Neural Networks (CNNs) :



3D Densely Connected CNN (1)

• The complexity of the problem and the limited detectors required deep 
very deep and powerful network to adequately parameterise the problem.

• A 3D extension to DenseNet* was proposed.

• Dense connections allow for the greater flow of gradients / information 
through the network, resulting in the passing of collective knowledge.

*Huang, Gao, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q. Weinberger. "Densely connected convolutional 

networks." In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 4700-4708. 2017.



3D Densely Connected CNN (2)

• To classify and localise, the network outputs a representational feature 
vector to two fully-connected (Multi-Layer Perceptron) output layers.
• 3 Neuron - >Coordinate Regression 

• 9 Neuron Softmax Non-linear -> Classification, 

• Given the two tasks we use a multi-task objective function to 
simultaneously train the network for both tasks.
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Results (Frequency Domain)

• Classification of 9 perturbation 
classes = 0.11% Error.

• Localisation of the perturbation 
source = Mean Absolute Error 
0.2902
(Average error in coordinate prediction to target.

Approx. 4cm error in (4m x 4m x 4m) volume).

• Our network performed 
extraordinarily well, exceeding our 
expectations.

Single Perturbation

Sensors

(SNR)

Train / Valid / 

Test 

(%)

Classification Regression (I,j,k)

Error (%) F1-Score MAE MSE

All 70 / 15 / 15 0.06±0.051 0.9344±0.004 0.1435±0.011 0.0342±0.008

48 In-Core 70 / 15 / 15 0.11±0.010 0.9311±0.001 0.2902±0.011 0.3072±0.014

48 In-Core 25 / 15 / 60 0.32±0.025 0.9149±0.002 0.3978±0.017 0.6407±0.052

48 In-Core 15 / 25 / 60 0.44±0.061 0.9141±0.003 0.4858±0.017 0.7727±0.006

48 In-Core (3) 70 / 15 / 15 0.15±0.006 0.9231±0.001 0.3456±0.016 0.4905±0.011

48 In-Core (1) 70 / 15 / 15 0.19±0.036 0.9225±0.002 0.3709±0.020 0.5185±0.017



Semantic Segmentation
- Multiple, Simultaneously Occurring Perturbation Classification 
and Localisation



Beyond One Perturbation!
• In reality perturbations rarely occur in isolation, instead they are 

found as multiple perturbations occurring simultaneously.

• How can we develop architectures that computationally scale well to 
the large scale datasets and different reactors?

• Importantly how can we make an arbitrary number of predictions per 
sample that change between samples?



Semantic Segmentation
• Semantic segmentation is a methodology for the “linking” of each pixel in 

an input sample to a semantic (class) label.

• We can use this methodology to “link” the response to multiple driving 
perturbations (the image) to semantic label mask (classification) where the 
position of that semantic label in the image represents its origin location.



Voxel-Wise Semantic Segmentation (1)

• Each voxel in the output represents an origin location of a driving 
perturbation, the classification of a voxel represents that a driving 
perturbation of the identified scenarios is present.

• Leading from our previous work, we employ a 3D Fully-Convolutional 
Neural Network.

• Specifically we employ an encoder-decoder architecture.
• Encoder:  Produces a feature representation matrix of the input that encodes the 

information describing the input.

• Decoder: Takes this feature matrix and decodes to produce a prediction the same 
dimensions as the input.



Voxel-Wise Semantic Segmentation (2)



Voxel-Wise Semantic Segmentation (3)

• Our network uses some additional ‘tricks’ to assist in our task:

• Dilated Convolutions 

• Coord Conv 

• Strided Convolutions



Voxel-Wise Semantic Segmentation (4)

• Our major challenge lied with class imbalance, we have a large volume 
(34x34x34) with only a relatively small number of present perturbations.

• Focal loss helps, it gives more weight for “hard-to-classify examples”.

• We train the network to minimise the average categorical focal loss of every 
voxel in the mask to the ground truth (the true source location of the 
simulated perturbation). 

• We also utilise a logarithmic class weighting scheme to the focal loss to 
reduce the impact of perturbation classification imbalance.
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Data and Experimental Setup
• As previously mentioned we employed CORE SIM + to produce our large 

simulated dataset. 

• We additively combine a random number of individual driving 
perturbations data samples within a range [1, x] where x = {15, 30, 45}.

• We produce 500,000 combined samples per set (15, 30, 45) 

• Additionally, CORE SIM+ models two different PWR reactors that 
correspond to conditions found in real plant measurements.

• We demonstrate the performance of our network under different values for 
max. combinations for different reactors. 



Results (German pre-KONVOI)

• Strong classification of source 
perturbations at their 
originating assemblies.

• The highest perturbation 
classification error is attributed 
to AVS, we conjecture due to 
the more varied source 
locations of our combination 
procedure.

Per Class Voxel Prediction Accuracies *

No.

Comb

No.

Det

Accuracy (%)

BG1 AVS2 CAN3 SF4 SS5 CSF6 CSS7 CR8 TP9 BV10

15 56 99.08 90.47 92.98 86.49 93.02 97.62 97.22 83.06 94.74 100.00

30 56 99.64 85.97 81.48 90.48 97.37 90.24 95.12 90.21 93.25 100.00

45 56 99.35 82.28 88.00 87.50 89.23 90.00 92.42 88.99 93.20 100.00

1Background, 2Absorber Variable Strength, Vibrations of fuel assembly (3Cantilevered, 4Supported First, 5Supported Second, 
6Cantilevered Supported First, 7Cantilevered Supported Second modes), 8Control Rod Vibrations, 9Travelling Perturbation of 
coolant, 10Core Barrel Vibration



Results (Swiss pre-KONVOI)

• The majority of erroneous 
results come from False 
Positive identification, around 
the location of the true 
perturbation.

• The performance drop is 
somewhat expected from the 
German pre-KONVOI, due to 
increased size of the reactor 
mesh volume.

Per Class Voxel Prediction Accuracies *

No.

Comb

No.

Det

Accuracy (%)

BG AVS CANT SF SS CSF CSS CR TP BV

15 56 99.43 87.64 89.47 82.14 82.93 89.66 86.11 93.05 91.16 100.00

30 56 99.68 84.45 83.72 92.86 86.54 86.49 81.63 87.85 90.48 100.00

45 56 99.11 80.95 79.41 82.50 90.79 85.71 90.14 89.86 91.81 100.00



Example Prediction Masks

(German pre-KONVOI)

(Swiss pre-KONVOI)



Conclusions
• We provide a technique to perform the novel task to accurately (in the 

simulated case) classify and subsequently localize many simultaneously 
occurring perturbations via noise diagnostics.

• Our network requires very little additional reactor information to make 
these strong predictions.

• Large networks are required, and the computational effort is large.

• This approach is scalable and transferable to many reactor types as shown.

• Further work is being done to extend our approach into uncertainty 
prediction, and the determination of more perturbation characteristics.



How can we Leverage Synthetic and 
Real Plant Measurements?
- Self-Supervised Domain Adaptation
- Synthetic to Real Adaptation



Let’s Get Real!
• Can we just make predictions on the real plant measurements from the 

network trained on simulated data? 

• Real plant data is not annotated (unsupervised), how can we leverage 
the annotated simulated data that is abundant and provides clear 
perturbations distinctions?

• Real plant data, although modelled by the simulations, contains some 
inherent differences to simulated data, how do we minimise these 
differences as not to confuse our trained network?



Unsupervised Domain Adaptation
• We aim to learn a discriminative classifier (our voxel-wise semantic 

segmentation network) for classifying perturbations that is invariant to the 
presence of a domain shift from simulated to real data.

• We have no annotations in the real plant measurements so we need a 
method to align these different domains without semantic information 
rather we need to find common features across domains.

• Therefore, we opt to train our classifier to align the two domains in some 
shared feature space represented by the discriminative model through the 
process of solving a common auxiliary task that are constructed from the 
data itself (self-supervised learning).



• Auxiliary tasks are constructed from the input, providing feature 
understanding of structurally relevant info whilst not requiring annotation. 

• These tasks encourage alignment between the distribution of features 
captured in both the simulated (S) and real measurements (T) domains.

• The feature extractor predict identical augmentations for each input, 
enforcing invariance to the nuances displayed between distributions.

Self-Supervised Domain Adaptation (1)



Self-Supervised Domain Adaptation (2)



Results
• Very initial results, as we have no 

assured validation … Yet

• Positively, we identify vertically 
transporting phenomena which is 
also identified in signal processing 
analysis.

• Additionally, we observe a vertical 
column of AVS inline with this 
transport phenomena. 

German 
4-Loop pre-KONVOI 

Frequency = 0.3 Hz



Results
• The maximum mean discrepancy between 

the synthetic and real domains in feature 
space is reduced during training.

• Such convergence shows the network is 
reducing the distance between domains in 
feature space empirically showing 
alignment.



Conclusions
• We provide a methodology to leverage both domains of data, simulated 

and real.

• Our model uses structurally relevant information inherent in both domains 
to find common features.

• This approach does not require extra-human annotation yet can use the 
large labelled datasets and align to the nuances of real data to get a more 
accurate result.

• The future is explainable results!



Thank you & Questions?


