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Agenda
June 21, 2021 – CORTEX in a nutshell
08:30 – 08.45: Welcome and project overview

(C. Demazière, Chalmers University of Technology, Sweden)

08:45 – 09:00: Theoretical basis of neutron noise and core diagnostics
(C. Demazière, Chalmers University of Technology, Sweden)

09:00 – 11:00: Development, verification and validation of neutron noise-specific modelling tools

09:00 – 09:45: Overview of the modelling tools used or developed in CORTEX and their verification
(P. Vinai, Chalmers University of Technology, Sweden)

09:45 – 10:15: Break

10:15 – 11:00: Overview of the validation exercises undertaken in CORTEX
(M. Hursin, Ecole Polytechnique Fédérale de Lausanne, Switzerland)

11:00 – 11:45: Development of advanced signal analysis and machine learning techniques in support to core diagnostics
(S. Kollias, University of Lincoln, United Kingdom)

11:45 – 12:30: Questions and wrap-up
(C. Demazière, Chalmers University of Technology, Sweden)



Agenda
June 22, 2021 – Neutron noise-based core diagnostics applied to commercial nuclear reactors
08:30 – 08:35: Welcome and introduction

(J. Herb, Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) gGmbH, Germany)

08:35 – 09:05: Required instrumentation and data acquisition system
(G. Girardin, Kernkraftwerk Gösge-Daniken AG, Switzerland)

09:05 – 09:15: Required data for modelling the reactor transfer function
(C. Demazière, Chalmers University of Technology, Sweden)

09:15 – 09:45: Necessary signal processing
(C. Montalvo, Universidad Politécnica de Madrid, Spain)

09:45 – 10:15: Break

10:15 – 11:45: Machine learning architectures versus diagnostic tasks
(G. Leontidis, University of Aberdeen, United Kingdom; M. Yu, University of Lincoln, United Kingdom;
G. Alexandridis, Institute of Communication and Computer Systems, Greece)

11:45 – 12:15: Examples of applications on commercial reactors within CORTEX
(J. Herb, Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) gGmbH, Germany)

12:15 – 12:45: Questions and wrap-up
(J. Herb, Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) gGmbH, Germany;
C. Demazière, Chalmers University of Technology, Sweden)



Practicalities

• Turn off your camera and you microphone by default
• In case of question, use “Raise your hand” and turn on your camera 

and microphone when instructed by the moderator of the meeting
• Meeting will be recorded



Introduction and 
background



Introduction and background

• Fluctuations always existing in dynamical systems even at steady state-
conditions:

Conceptual illustration of the possible time-
dependence of a measured signal from a 

dynamical system

     0
,, ,X t X tX t  r rr

 ,X tr



Introduction and background

• Fluctuations always existing in dynamical systems even at steady state-
conditions:

Conceptual illustration of the possible time-
dependence of a measured signal from a 

dynamical system

     0
,, ,X t X tX t  r rr

actual
signal

 ,X tr



Introduction and background

• Fluctuations always existing in dynamical systems even at steady state-
conditions:

Conceptual illustration of the possible time-
dependence of a measured signal from a 

dynamical system

     0
,, ,X t X tX t  r rr

signal
trend or mean

 ,X tr



Introduction and background

• Fluctuations always existing in dynamical systems even at steady state-
conditions:

Fluctuations carrying some valuable information about the system 
dynamics

Conceptual illustration of the possible time-
dependence of a measured signal from a 

dynamical system
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Introduction and background

• Fluctuations could be used for “diagnostics”, i.e.:

• Early detection of anomalies

• Estimation of dynamical system characteristics

… even if the system is operating at steady-state conditions

 Fluctuations in the neutron density in nuclear reactors can be used 
for core diagnostics and monitoring



Ex-core neutron detectors

Fixed in-core neutron detectors

Movable in-core neutron detectors

Introduction and background
• Neutron detectors present both as in-core and ex-core:

Advantage: “sense” perturbations even far away from the perturbations
Disadvantage: western-type reactors do not always contain many in-core neutron detectors



Introduction and background

• Neutron noise diagnostics requires establishing relationships between 
neutron detectors and possible perturbations
The “reactor transfer function”            needs to be determined , ,G pr r
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Introduction and background

• But noise diagnostics requires the inversion of the reactor transfer 
function 
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Introduction and background

• But noise diagnostics requires the inversion of the reactor transfer 
function

Machine learning could be used for that purpose
Unfolding possible even if very few detectors available (due to the spatial 

correlations existing between a localized perturbation and its effect throughout the nuclear core)   

 
1

, ,G 
 

  pr r , r  ,P pr

 , ,G pr r



CORTEX project overview



CORTEX project overview

• Overall principle of the Horizon 2020 CORTEX project:

More info at:
cortex-h2020.eu

http://cortex-h2020.eu/


CORTEX project overview

• Project aims for CORTEX:

• WP1: Developing high fidelity tools for simulating stationary fluctuations
(leader: P. Vinai, Chalmers University of Technology, Sweden)

• WP2: Validating those tools against experiments to be performed at research reactors
(leader: M. Hursin, Ecole Polytechnique Fédérale de Lausanne, Switzerland)

• WP3: Developing advanced signal processing and machine learning techniques (to be combined 
with the simulation tools)
(leader: S. Kollias, University of Lincoln, United Kingdom)

• WP4: Demonstrating the proposed methods for both on-line and off-line core diagnostics and
monitoring
(leader: J. Herb, Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) gGmbH, Germany)

• WP5: Disseminating the knowledge gathered from within the project to stakeholders in the
nuclear sector
(leader: C. Demazière, Chalmers University of Technology, Sweden)



CORTEX project overview

• CORTEX project participants:
• Project led and coordinated by Chalmers University of Technology
• 18 European organizations involved in the project:

 CEA and LGI Consulting (France)
 Centre for Energy Research, Hungarian Academy of Sciences – MTA EK (Hungary)
 EPFL, KKG, PSI (Switzerland)
 GRS, ISTec, TIS, PEL, TU Dresden and TU Munich (Germany)
 Ιnstitute of Communication & Computer Systems - National Technical University of 

Athens (Greece)
 UJV (Czech Republic)
 University of Lincoln (UK)
 UPM and UPV (Spain)



CORTEX project overview
• CORTEX project participants:

• 2 non-European organizations formally involved in the project:
 KURRI (Japan)
 AMS Corp (USA)

• 7 additional organizations involved in the Advisory End-User Group:
 IRSN (France)
 KKG (Switzerland)
 PEL (Germany)
 Ringhals (Sweden)
 Tractebel (Belgium)
 CNAT (Spain)
 Framatome GmbH (Germany)
 Westinghouse Electric Sweden AB (Sweden)
 NRG (the Netherlands)



CORTEX project overview

• Project started on September 1st, 2017 and ends on August 31st, 2021
• More than 70 researchers involved
• 25 deliverables to the European Commission
• 23 presentations made at conferences and workshops
• 5 poster presented at conferences
• 35 peer-reviewed conference papers
• 15 peer-reviewed journal publications
• 8 training courses/hands-on training sessions offered
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Theoretical basis of neutron noise and 
core diagnostics
• Neutron noise dating back from the early days of nuclear power

(oscillator experiments in the Clinton Pile at Oak Ridge National 
Laboratories, USA in late 40ies)

• First applications in commercial reactors:
• Core-barrel vibrations at the Palisades plant, USA (1975)
• Estimation of in-core coolant velocity in German BWRs (1979)



Theoretical basis of neutron noise and 
core diagnostics
• Modelling of the neutron noise can be done using the neutron 

transport equation (Boltzmann equation):

A model to represent the effect of a given perturbation onto the 
macroscopic cross-section is required
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Theoretical basis of neutron noise and 
core diagnostics
• Modelling of the effect of the cross-section perturbations onto the 

neutron flux can be done in several ways:
• Low/high order in angle
• Low/high order in space
• Low/high order in energy
• Time- or frequency-domain
• Deterministic methods or probabilistic methods (Monte Carlo)

See WP1 presentation titled “Overview of the modelling tools used 
or developed in CORTEX and their verification”
See WP2 presentation titled “Overview of the validation exercises 

undertaken in CORTEX”



Theoretical basis of neutron noise and 
core diagnostics
• For diagnostic purposes, one needs to check that the induced neutron 

noise is significantly different, depending on the type of perturbation 
and its location
Examination of the amplitude and phase of the neutron noise usually 

allows differentiating the type of perturbation
Nevertheless, some more intricate responses can arise in some cases
Requires a faithful modelling of the reactor transfer function

For the identification of the location of a perturbation, an appreciable 
deviation from point-kinetics is required



Theoretical basis of neutron noise and 
core diagnostics
• Point-kinetic component of the neutron noise:

Using the factorization:

with
amplitude factor
shape function

such that
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Theoretical basis of neutron noise and 
core diagnostics
• Point-kinetic component of the neutron noise:

One obtains in first order:

where one assumed: 

 Point-kinetic response:
 “Space-dependent” response:
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Theoretical basis of neutron noise and 
core diagnostics
• Point-kinetic component of the neutron noise:

The fluctuations of the amplitude factor are further given, in the 
frequency domain, as:

with

zero-power reactor transfer function
(better name: point-kinetic zero-power reactor transfer function)
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Theoretical basis of neutron noise and 
core diagnostics
• The ability to localize anomalies from very few detector readings 

requires a “sufficient” deviation from point-kinetics
See WP3 presentation titled “Development of advanced signal analysis 

and machine learning techniques in support to core diagnostics”
See WP4 presentations tomorrow “Neutron noise-based core 

diagnostics applied to commercial nuclear reactors”



Theoretical basis of neutron noise and 
core diagnostics

Illustration of the difference between the point-kinetic component and the total 
induced neutron noise in the frequency domain at 1 Hz, for a perturbation located 

at -30 cm from the centre of a nuclear core of size 300 cm.



Conclusions



Conclusions

• CORTEX methodology relying on a cross-disciplinary expertise in:
• Reactor physics, dynamics, and modelling
• Experimental reactor physics
• Plant measurements
• Signal processing and analysis
• Artificial Intelligence and Machine Learning

Main purpose of the workshop: summarize the main findings and 
their implications for core monitoring in commercial reactors
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