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WP3 objectives:

* Analysis of Plant Data and Neutron Current & Flux

Modelling through Advanced Signal Processing
(ASP)

* Analysis of Plant Data and Neutron Current & Flux
Modelling via Machine Learning (ML) Techniques




WP3 objectives (1):

Analysis of Plant Data and Neutron Current & Flux
Modelling through Advanced Signal Processing (ASP)

Advanced Signal processing methods included

- Fast Fourier transform, Hilbert transformations, multiresolution
wavelet analysis

- Non-parametric inversion methods: artificial neural networks &
fuzzy logic

This part built on former work that had been performed by the project
partners such as UPM, U}V, CEA and partly from ICCS-NTUA.




WP3 objectives (ll):

Analysis of Plant Data and Neutron Current & Flux
Modelling via Machine Learning (ML) Techniques

Machine learning focused on current research on deep learning (DL)
and deep neural networks (DNNs) produced by UoL and ICCS-NTUA.

- Required large (simulated) dataset generation by experts in the field — either in
the frequency, or the time domain (Chalmers, PSI)

- Included development and use of state-of-the-art DNNs, trained through
supervised, but also unsupervised learning algorithms

- Prepared the path for application of these algorithms to real plant data in VWP4,
taking into account the lack of labelling information.




WP3 Specific Targets:

e Detection of abnormal fluctuations & classification based on their
safety impact (Localization & Type Classification Tasks)

 Calculation of the induced noise

* Inversion of the reactor transfer function using estimation results
from WP

* Handling of scarcity of in-core instrumentation

* Learning in selected reactor(s) and transferring it to others
(Simulated vs Real)

* Application and adaptation of the developed techniques to real
data in WP4.




WP3 Tasks:

* Task 3.1: Generation of basic scenarios and simulated data
* Task 3.2: Advanced data processing in time and frequency

* Task 3.3: Data analysis using machine learning and DNNs




Task 3.1: Generation of basic scenarios and
simulated data

e Subtask 3.1.1: Definition of basic scenarios

—> Types of perturbations in Time, or Frequency Domains
* Subtask 3.1.2: Early generation of simulated data
—> Generation of adequate numbers of simulated data (with some scenarios)

* Subtask 3.1.3: Further generation of simulated data

—> Generation of complete set of scenarios and related simulated datasets.




Task 3.2: Advanced data processing in time
and frequency

* Subtask 3.2.1: Multiresolution wavelet-based processing of signals

—> examine the benefits of wavelet based feature extraction for ML analysis

Subtask 3.2.2: Noise analysis in processing of plant data

—> detect and extract noise characteristics that can be used in further analysis

Subtask 3.2.3: Reconstructing missing data

—> improve performance by averaging aggregated data for missing value reconstruction

Subtask 3.2.4: Preliminary processing of real data

—> extract and analyse characteristics of real plant data.




Task 3.3: Data analysis using machine
learning and DNNs

* Subtask 3.3.l: Extraction of model parameter values from data

—> Train different ML/DL architectures
* Subtask 3.3.2: Training intelligent systems for efficient data analysis

—> Extend state-of-the-art to fit 3-D localization & classification problems

Subtask 3.3.3: Using pre-trained networks through transfer learning
—> Adopt transfer learning and domain adaptation methodologies

 Subtask 3.3.4: Preliminary analysis of plant data and adaptation

— Develop DNNs trained with simulated data; use them to analyse real data.
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WP3 in a nutshells:

* Summary of Goals

* Summary of Achievements




WP3 Summary of Goals

* Develop techniques that allow detecting anomalies in nuclear reactor
core:
- abnormal vibrations of fuel and core internals,
- flow blockage,
- coolant inlet perturbations.

* Use non-intrusive monitoring of neutron noise (fluctuations in
neutron flux recorded by in-core and ex-core instrumentation).

* WP3 developments were completed in early 2020; efforts were then
focused on applying the techniques to real plant data, within VWP4.




WP3 Summary of Achievements

* Development of a variety of signal processing and analysis methods:

- working in the frequency and time domains,
- finding coherence and phase correlation relationships in noisy signals,
- using signal transformations (Hilbert-Huang; Discrete Wavelet)

* Development of a rich machine and deep learning framework for:

- unfolding of reactor transfer functions,
- enabling the classification and localization of perturbations,
- examining single, multiple and simultaneous reactor perturbations.




Examples of Significant Outcomes

« Examples of Signal Processing & Analysis

* Examples of Machine Learning Analysis




Examples of Signal Processing & Analysis

* Monitor signal characteristics and infer correlations and anomalies

* Optimise wavelet transformation of signals




Examples of Signal Processing results (1):

i)The profiles of the APSDs are similar to each other. However, there are completely defective
sensors that can be clearly differentiated (J06-2, N08-2)

i) The main differences refer to the area enclosed under APSDs, (noise variance) & the amplitude of
the resonance peaks.

APSD

APSD

APSD

25 30
Frequency (Hz)

Figure 1: APSDs of the sensors in the same level 4, 5, and 6, from up to down,
respectively




Examples of Signal Processing results (11):

(i) signals at vertical positions at top of core (I,2) & at bottom (6) exhibit similar values of trend;

(i) values at bottom of core (5) are two orders of magnitude smaller than nearby vertical detectors
—> this detector may be malfunctioning;

ii) detectors near middle of core have different trend levels; small at position 3 & larger at position 4.
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Examples of Wavelet Analysis results (1):

(i) wavelet coefficients’ energy levels are higher at bottom positions (5, 6) than top (I, 2) for most in-
core detectors,

(i) at 5th axial level (bottom) all detectors witness large wavelet coefficients’ energy, except of J06,
(iii) detectors J06/CO8 have complementary behavior wrt wavelet coefficients’ energy at core bottom.

Energies of the coeffs of Incore Detectors G02

0.005
0.004
0.003
0.002
0.001
0.000
L-G02-1 L-G02-2 L-G02-3 L-G02-4
Energies of the coeffs of Incore Detectors C08
0.008
0.007
0.006
0.005
0.004
0.003
0.002
0.001
0.000
L-C08-1 L-C08-2 L-C08-3 L-C08-5
Energies of the coeffs of Incore Detectors J06
0.008
0.007
0.006
0.005
0.004
0.003
0.002
0.001
0.000

L-J06-1 L-J06-3 L-J06-4 L-J06-5 L-J06-6




Examples of Wavelet Analysis results (11):

(i) The biorthogonal mother wavelet family accurately described the majority of the signals

Best wavelet family for the whole signal (Energy-to-Entropy criterion)
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Examples of Machine Learning Analysis

* Target semantic segmentation, i.e., classification of each voxel in the
input data to a semantic (class) perturbation label.

* Develop 3-D fully-convolutional encoder-decoder segmentation
networks, generating a prediction mask of perturbation class per voxel.

* Simultaneously detect & localize multiple reactor core perturbations
for, e.g., a 32x32x34 voxel space, given only 48 In-core & 8 Ex-core
detectors.

* Non-trivial task, successfully tackled in WP3 and evaluated on a large
variety of simulated input data cases.




Semantic Segmentation: predictions (coloured voxels) represent
sources at which a perturbation type originated from.
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AVS = Absorber of Variable Strength,

FA = Fuel Assembly Vibration, Per Class Voxel Accuracies *
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Novel DNNs & Domain Adaptation: from simulated to real data (1)
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A combined network of voxel-wise semantic segmentation and a 3-D Convolutional Neural
Network, producing four volumetric predictions: perturbation classification, k-theta vibration
parameters and relative perturbation amplitude.




Novel DNNs & Domain Adaptation: from simulated to real data (ll)
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From simulated to real data
* Transfer Learning (The real plant data and the simulated data are of near identical distributions)
* Domain Adaptation (The real data is unlabelled; the distribution of simulated and real data is different)

* Self-learning (Unlabelled plant data alone is used; learning deep feature representations is performed

through auxiliary tasks). (i
RO




Details of the Technical Achievements

* This presentation does not aim to present the details of the technical
achievements related to ASP and ML/DL methods, particularly related
to the application to real plant data.

* In the following, and particularly in the presentations related to VP4,
such details will be presented.

* In the rest of this presentation, we will focus on what has been

achieved and which are the current prospects, by the end of the
CORTEX project.




Moving from 09/2017 to 08/2021 (1)

* When preparing and starting CORTEX in 2016 & 2017, our technical

partners
methodo

e That is w

nad started developing and implementing Deep Learning
ogies and Deep Neural Networks.

ny the main novelty of CORTEX has been in:

- the refinement and application of state-of-the-art DNNs (2-D, 3-D
CNN, RNN models, U-Net, autoencoder, Conv-LSTM)

- developing supervised, unsupervised, self-supervised learning
contexts

- transfer learning, domain adaptation; considering uncertainty

- application to time/frequency simulated real & real plant data.




Indicative (ML) Publications

* A.Durrant, G. Leontidis, S.Kollias, L. Torres, C. Montalvo, A. Mylonakis, C. Demaziere,
P.Vinai, “Detection and Localization of Multiple In-Core Perturbations with Neutron
2Noozi?e-based Self-Supervised Domain Adaptation”, ANS M&C 2021, 3-7 October

* G.loannou,T. Tasakos,A. Mylonakis, G. Alexandridis, C. Demaziere, P.Vinai, A.
Stafylopatis, “Feature Extraction and ldentification techniques for the Alignment of
gertulr; atiz%ri ISimulations with Power Plant Measurements”, ANS M&C 2021, 3-7

ctober :

* C.Demaziere,A. Mylonakis, P.Vinai,A. Durrant, F. Ribeiro, ]. Wingate, G. Leontidis, S.

Kollias, “Neutron Noise-based Anomaly Classification & Localization Using ML”,
PHYSOR 2020, Cambridge, UK, 29/3-2/4/2020.




Indicative (ML) Publications

* A.Durrant, G. Leontidis, S.Kollias, 3D CNN - RNNs for reactor perturbation
unfolding and anomaly detection, EP] Nuclear Sci.Technol. 5,20, 2019; also in FISA,
Pitesti, Romania, 4-7/6/2019 (best paper award).

* F Ribeiro, F. Caliva, D. Chionis, A. Dokhane, A. Mylonakis, C. Demaziere, G. Leontidis
and S. Kollias, “Towards a Deep Unified Framework for Nuclear Reactor

Perturbation Analysis”, [EEE Symposium Series on Computational intelligence,
Bangalore, India, 18-21 November 2018.

* F Caliva, E S. Ribeiro, A. Mylonakis, C. Demaziere, P.Vinai, G. Leontidis, and S.
Kollias, “A deep Iearnin% approach to anomaly detection in nuclear reactors,’
o

|IEEE International Joint nference on Neural Networks, Rio de Janeiro, Brazil, 8-
|3 July 2018.




Moving from 09/2017 to 08/2021 (I1)

* A great research work has been achieved in CORTEX in developing and
adapting state-of-the-art DL — DNN models for unfolding stationary
perturbations on simulated data; interesting results have already been
obtained with real plant data as well.

* Extending the models and results adapting emerging ML/DL models (self-
supervising, gaussian frameworks, graphs, continual learning) on the

obtained and new plant data is an on-going R&D activity, building on and
beyond CORTEX.

* The implementation of the research has been achieved by data transfer
from field expert partners to technology partners and exchange of the
results; sharing & use of the created ML tools by expert partners was not
possible.




Moving from 09/2017 to 08/2021 (111)

* In the meantime ML and DL approaches have been considered as
being part of the Artificial Intelligence Landscape of methods.

* The European Commission has elaborated a lot on Al and ML/DL
guidelines and prospects during the above period.




2018: - Declaration of Co-operation in Al
- A European Approach to Al (EC, April 2018)

- A Coordinated Plan on Al (EC, December 2018)

2019: - Ethics Guidelines for Trustworthy Al (HLEG EC, April 2019)
- Building Trust in Al (HLEG EC, April 2019)
- Policy & Investment Recommendations for Trustworthy Al (HLEG
Al, June 2019)



2020: - Data Governance Act (EC, November 2020)
- Berlin Declaration of Digital Society and Value-based Digital
Governance (EC, December 2020)
2021: - Revised Coordinated Plan on Al (EC, April 2021)

Rules for Al (EC, April 2021)



”Accelerating e Putting Al at the Service of People, Society
Digital & Environment

Innovation * Fostering Creativity, Economic Growth &
Digital Transformation

by leveraging
Inclusive
Al” for all and for the common good '

/

* Creating a technology-enabled future that is
more democratic, equitable and sustainable

o




Key Policy Areas

1. Al Infrastructural
Enablers

Al Infrastructures,
Research, Education & Skills Capital,
. Al Innovation ecosystem

3. Al Principles

Ethical. Trustworthy
& Democratic Al for All

Al Vision

2. Al Application Areas

- Al-driven Economic

Transformation and Growth
Al far tho Diithlic Cartnr



EC: Al Coordinated PLan 2021

e Al for climate and environment *

 Next Generation Al for Health

“Build Strategic * Strategy for Robotics with Al
Leadership in * Alin the public sector
High |mpaCt * Al in law enforcement, migration, asylum
Sectors” * Al for smarter, safer, sustainable mobility
* Al for sustainable agriculture '
/
4




Moving from the developed black-box ML/DL methods to Al
- Trustworthy

- Explainable

- Unbiased

- Democratized

- User-Centered

- Infrastructure Agnostic



Thank you
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