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Abstract

The investigation of neutron noise is key to several applications in nuclear re-
actor physics, such as the detection of control rod or assembly vibrations and
the diagnostic of coolant speed and void fraction. In this paper we will eluci-
date some aspects of the noise equations in the Fourier domain, for the case of
periodic fuel rod vibrations with frequency ω0 in a small symmetrical system
in which the perturbation is centrally located. We will in particular focus on
the double frequency effect, i.e., the emergence of a noise component at 2ω0
(possibly stronger than the one at the fundamental frequency ω0). Our analysis
will be carried out without truncating the noise source at the first order and in
the context of a non-perturbative approach (i.e., without resorting to lineariza-
tion). For this purpose, we will select a simple benchmark configuration that
is amenable to accurate reference solutions obtained by solving the exact time-
dependent transport equations. The analysis carried out in this work suggests
that the non-perturbative noise equations are mandatory in order to properly dis-
criminate the possible emergence of double frequency effects in neutron noise,
especially in view of comparing simulation results to experimental data.
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1. Introduction

Power reactor noise is defined as the fluctuations of the neutron flux around
the steady state, due to temperature or density changes and/or displacements of
core components, which in turn induce fluctuations on the material cross sec-
tions (Pazsit and Demazière, 2010). Despite usually being an unwanted phe-5

nomenon, such fluctuations carry an information content that can be usefully
extracted for the purpose of reactor diagnostics and measurements (Pazsit and
Demazière, 2010; Williams, 1974; Thie, 1981). The analysis of the neutron flux
variations at the local or global scale within the core can be used e.g. in order to
detect anomalies (Behriguer et al., 1977; Fry et al., 1986), as in the case of con-10

trol rod or assembly vibrations (Pazsit and Analytis, 1980), or infer the coolant
speed and void fraction (Kosály, 1980).

Traditionally, the equations governing the neutron noise are derived based
on a small-perturbation formulation: a perturbation of the Boltzmann operator
is assumed to induce a response of the same order for the neutron flux, and the15

terms containing both the perturbed flux and the perturbed cross sections will
be neglected by supposing that they will yield higher-order contributions (Pazsit
and Demazière, 2010; Williams, 1974). This approach, dubbed the ‘orthodox
method’ (Pazsit, 1984), allows obtaining simpler equations for the neutron noise,
which are finally Fourier-transformed in order to establish the customary lin-20

earized noise equations in the frequency domain (Pazsit and Demazière, 2010;
Williams, 1974). Such strategy has led to the development of ingenuous ana-
lytical tools, mostly relying on the use of Green’s functions in diffusion theory,
which have been successfully applied to the analysis of many practical diagno-
sis and monitoring problems (Pazsit and Analytis, 1980; Jonsson et al., 2012;25

Pazsit and Karlsson, 1996; Yamamoto and Sakamoto, 2019; Pazsit and Dykin,
2018); for a review, see, e.g., (Pazsit and Demazière, 2010; Williams, 1974). In
the context of vibrating noise sources, a common approximation is to represent
the spatial shape of the perturbation as an idealized delta function (the so-called
Feinberg-Galanin-Williams model (Williams, 1970)), which might help in ob-30

taining closed-form solutions for simple one-dimensional configurations.
The orthodox method is known to yield to correct results for the case of

absorbers of variable strength (Williams, 1974; Thie, 1981; Kosály, 1980), but
generally fails for the case of absorber or fuel rod vibrations (Pazsit, 1977):
these considerations were implicit already in the seminal work of (Weinberg and35

Schweinler, 1948) and are discussed at length in (Pazsit, 1984). When the neu-
tron noise is induced by vibrations, with a material region (e.g., a fuel rod or a
control rod) moving in a host medium (e.g., the surrounding moderator), the am-
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plitude of the cross section fluctuations cannot be assumed to be small, except
under special conditions, such as in the limit case of weak absorbers (Wein-40

berg and Schweinler, 1948; Pazsit, 1984). For the case of a vibrating absorber,
the main reason for the failure of the linearized noise equations is that the ne-
glected term contains a contribution of the same order as the perturbation, which
can only be made small when the absorber strength is also small (Pazsit, 1984).
Nonetheless, it has been shown that the orthodox method may still provide accu-45

rate estimates for the neutron noise when the vibration amplitude ε is small with
respect to the typical size d of the vibrating body projected in the direction of the
vibration, i.e., ε/d � 1 (Pazsit, 1984; Pazsit and Karlsson, 1996), as suggested
by the boundary-perturbation theory (Rahnema, 1996; Sanchez, 2015). Similar
conclusions for the case of vibration-induced neutron noise were more recently50

drawn in (Rouchon and Sanchez, 2015; Sanchez, 2015; Rouchon, 2016).
Furthermore, within the framework of the linearized equations combined

with the ε/d approximation for vibration-induced noise, a common assumption
consists in keeping only the leading-order term of the noise source, which cor-
responds to the contribution at the fundamental frequency ω0 of the vibration:55

by virtue of the linearity of the noise equations, the system will thus respond
only at ω0 (Pazsit, 1977, 1984). This leads to the important issue of the ‘double
frequency’ effect (Pazsit, 1977), i.e., ascertaining whether a system subject to
a periodic vibration at frequency ω0 can possibly exhibit a secondary spectral
peak at 2ω0 in the Fourier-transformed response, as suggested by some exper-60

iments (Lucia et al., 1973). This is in principle allowed when the noise source
is treated exactly (Antonopoulos-Domis, 1976; Pazsit, 1977). For the case of
weak absorbers, it has been shown that the amplitude of the secondary peak
will be typically small (Pazsit, 1977). However, several works have hinted out
that the emergence of a peak at 2ω0 might be non-trivially related to the spatial65

shape of the flux gradients through the vibrating region, as shown by a careful
treatment based on Green’s functions in diffusion theory (Antonopoulos-Domis,
1976; Pazsit, 1977, 1984). Quite surprisingly, continuous-energy Monte Carlo
simulations of the linearized noise equations independently performed by CEA
and Kyoto University have also pointed out that in some circumstances the spec-70

tral peak at 2ω0 might become (much) larger than the one at ω0
1.

Neutron noise analysis is nowadays mostly based on state-of-the-art numeri-
cal codes, capable of taking into account arbitrary cross section variations in the
time or frequency domain (Demazière, 2011; Yamamoto, 2013; Rouchon et al.,
2017; Rohde et al., 2018; Olmo-Juan et al., 2019; Vidal-Ferrándiz et al., 2020;75

1T. Yamamoto, personal communication, 2019.
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Chionis et al., 2020), as witnessed by the renewed interest stimulated by the
CORTEX H2020 project (Demazière et al., 2018). For the case of frequency
domain, newly developed transport (as opposed to diffusion) solvers (Rouchon,
2016; Yi et al., 2019) and Monte Carlo methods (Yamamoto, 2013; Rouchon
et al., 2017) allow addressing realistic applications at the scale of fuel assem-80

blies or full reactor cores with unprecedented accuracy (Demazière, 2011; Rou-
chon, 2016; Yamamoto, 2018; Mylonakis et al., 2019; Rouchon et al., 2019).
However, one must bear in mind that each numerical tool has specific potential-
ities and drawbacks, as well as implicit assumptions due to the choices made by
the code developers, such as working with the linearized equations, introducing85

the ε/d approximation, truncating the noise source, and so on. In this respect,
the reliability of these codes inherently depends on a deeper understanding of
the validity domain of the underlying models: the goal of the present work is
to elucidate the behaviour of the noise equations, and in particular the double
frequency effect, when the source is not truncated at the first order and in the90

context of a non-perturbative approach (i.e., without resorting to linearization).
For this purpose, we will use a simple benchmark configuration, namely, a single
vibrating fuel rod centrally located in a host moderator, which avoids unneces-
sary complications and yet retains the key physical ingredients.

This paper is organized as follows. In Sec. 2 we briefly recall the formal-95

ism of the neutron noise equations and the orthodox linearization. In Sec. 3
we introduce the noise source pertaining to the case of mechanical vibrations,
and examine the contributions of the discrete harmonics of the source. In or-
der to illustrate the behaviour of the noise field and the interplay of the different
harmonics, in Sec. 4 we present a benchmark based on the rod model, a one-100

dimensional, single-speed neutron transport problem, and discuss our findings
within the framework of the linearized noise theory. The solutions correspond-
ing to the non-perturbative approach will be derived and contrasted to those of
the linearized equations in Sec. 5. Conclusions will be finally drawn in Sec. 6.

4



2. The noise equation(s) and the orthodox linearization105

Let us consider a nuclear system at equilibrium, whose balance equation for
the critical neutron flux ϕc(r,Ω,E) reads Bcϕc = 0, where

Bc =Ω · ∇+Σt −

∫ ∫
fs(Ω′ ·Ω,E′→ E)Σs(r,E′)dE′dΩ′

−
χp(E)
4πkeff

∫ ∫
νp(E′)Σ f (r,E′)dE′dΩ′

−
∑

j

χ
j
d(E)

4πkeff

∫ ∫
ν

j
d(E′)Σ f (r,E′)dE′dΩ′ (1)

is the stationary Boltzmann operator, with associated fundamental eigenvalue
keff ' 1, and the sum is extended over the precursor families. Notation is stan-
dard, and for the sake of simplicity we have assumed here that a single fissile
isotope is present. Suppose now that a perturbation possibly involving mate-
rial displacements is introduced in the system, with the perturbed cross sections
Σα(t) = Σα(r,E, t) evolving in time according to a given law, α being the in-
dex of a specific reaction. Correspondingly, the perturbed neutron flux ϕ(t) =

ϕ(r,Ω,E, t) will be ruled by the perturbed time-dependent Boltzmann equation
Bp(t)ϕ(t) = 0, where

Bp(t) =
1
υ

∂

∂t
+Ω · ∇+Σt(r,E, t)

−

∫ ∫
fs(Ω′ ·Ω,E′→ E)Σs(r,E′, t)dE′dΩ′

−
χp(E)
4πkeff

∫ ∫
νp(E′)Σ f (r,E′, t)dE′dΩ′

−
∑

j

λ j
χ

j
d(E)

4πkeff

∫ ∫ ∫
e−λ j(t−t′)ν

j
d(E′)Σ f (r,E′, t′)dE′dΩ′dt′ (2)

is the time-dependent Boltzmann operator, including the contributions of the de-
layed neutron precursors.

The perturbation is supposed to have started at some previous time, suffi-
ciently far in the past for the system to have reached its asymptotic behaviour at
time t = 0 (the initial observation time). We will assume that the cross section110
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perturbations can be expressed as

Σα(r,E, t) = Σα(r,E) +δΣα(r,E, t), (3)

where Σα(r,E) is the stationary part and δΣα(r,E, t) is the time-varying compo-
nent. Correspondingly, we define the neutron noise δϕ(r,Ω,E, t) as the time-
varying part of the neutron field, and we decompose

ϕ(r,Ω,E, t) = ϕc(r,Ω,E) +δϕ(r,Ω,E, t). (4)

We are thus led to the formulation of the noise equation115

[B(t) +δB(t)]δϕ(t) = −δB(t)ϕc, (5)

where we have introduced the reference Boltzmann operator

B(t) =
1
υ

∂

∂t
+Ω · ∇+Σt(r,E)

−

∫ ∫
fs(Ω′ ·Ω,E′→ E)Σs(r,E′)dE′dΩ′

−
χp(E)
4πkeff

∫ ∫
νp(E′)Σ f (r,E′)dE′dΩ′

−
∑

j

λ j
χ

j
d(E)

4πkeff

∫ ∫ ∫
e−λ j(t−t′)ν

j
d(E′)Σ f (r,E′)dE′dΩ′dt′ (6)

and the perturbation of the Boltzmann operator

δB(t) = δΣt(r,E, t)−
∫ ∫

fs(Ω′ ·Ω,E′→ E)δΣs(r,E′, t)dE′dΩ′

−
χp(E)
4πkeff

∫ ∫
νp(E′)δΣ f (r,E′, t)dE′dΩ′

−
∑

j

λ j
χ

j
d(E)

4πkeff

∫ ∫ ∫
e−λ j(t−t′)ν

j
d(E′)δΣ f (r,E′, t′)dE′dΩ′dt′. (7)

Equation (5) corresponds to formally decomposing the perturbed Boltzmann op-
erator as Bp(t) = B(t) + δB(t). The term on the right-hand side of Eq. (5) rep-
resents the noise source, depending on the stationary flux ϕc (Pazsit and De-
mazière, 2010; Williams, 1974). No approximations have been introduced so
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far.120

2.1. Fourier analysis and linearization
The analysis of the noise equations is often carried out in the frequency do-

main. By applying the Fourier transform

f (ω) = F
[
f (t)

]
(ω) =

∫ +∞

−∞

e−iωt f (t)dt (8)

and using the convolution theorem

F
[
f (t)g(t)

]
(ω) =

1
2π
F

[
f (t)

]
(ω)?F

[
g(t)

]
(ω) =

1
2π

∫
dω′ f (ω−ω′)g(ω′), (9)

where ? denotes the convolution product, Eq. (5) yields the Fourier-transformed125

exact noise equation

B(ω)δϕ(ω) +
1

2π

∫
δB(ω−ω′)δϕ(ω′)dω′ = −δB(ω)ϕc (10)

in the frequency domain (Sanchez, 2015; Rouchon and Sanchez, 2015; Rouchon,
2016). Here we have introduced the Fourier-domain reference Boltzmann oper-
ator

B(ω) = i
ω

υ
+Σt(r,E) +Ω · ∇−

∫ ∫
fs(Ω′ ·Ω,E′→ E)Σs(r,E′)dE′dΩ′

−
χp(E)
4πkeff

∫ ∫
νp(E′)Σ f (r,E′)dE′dΩ′

−
∑

j

λ j

λ j + iω

χ
j
d(E)

4πkeff

∫ ∫
ν

j
d(E′)Σ f (r,E′)dE′dΩ′ (11)

and the Fourier-domain perturbation operator

δB(ω) = δΣt(r,E,ω)−
∫ ∫

fs(Ω′ ·Ω,E′→ E)δΣs(r,E′,ω)dE′dΩ′

−
χp(E)
4πkeff

∫ ∫
νp(E′)δΣ f (r,E′,ω)dE′dΩ′

−
∑

j

λ j

λ j + iω

χ
j
d(E)

4πkeff

∫ ∫
ν

j
d(E′)δΣ f (r,E′,ω)dE′dΩ′. (12)
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Equation (10) is a Boltzmann-like transport equation for the complex neutron
noise field δϕ(ω), where the operators B(ω) and δB(ω) as well as the source
term −δB(ω)ϕc are complex.

The orthodox approach to the noise theory consists in neglecting the terms of130

the form δΣα(t)δϕ(t) appearing in δB(t)δϕ(t) in Eq. (5), based on the assumption
that the product of the two perturbed terms is small as compared to the pertur-
bation of each term in the product (Pazsit, 1984). Under this hypothesis, we can
drop the convolution product from Eq. (10), which yields the customary formu-
lation of the linearized noise equation in the frequency domain, namely135

B(ω)δϕ(ω) = −δB(ω)ϕc. (13)

By opposition, we will call Eq. (10) the non-perturbative formulation of the
Fourier-transformed noise equations.

3. The source term: the case of interface vibrations

The source term −δB(ω)ϕc appears both in Eq. (10) and in Eq. (13) and
does not depend on whether we consider the exact or linearized noise equations.140

However, the source term does depend on the specific assumptions on the noise
model for the system under consideration: the operator δB(ω) contains terms of
the kind δΣα(r,E,ω), expressing the Fourier-transformed cross section perturba-
tion for a given reaction α.

In the following, we will assume that the neutron noise is induced by one or145

several vibrating interfaces between homogeneous materials. Let us focus on the
case where the vibration acts along a single axis, say x, and let us denote by x0 the
unperturbed position of the interface 2. We define ΣL

α(E) and ΣR
α(E) the spatially

homogeneous cross sections of the regions at the left (x < x0) and the right (x >
x0), respectively, of the interface at x0. We assume that the vibration is periodic,150

with frequency ω0 and period T0 = 2π/ω0, and with amplitude ε smaller than the
linear size d of the region concerned by the interface perturbation. The position
of the moving interface will be described by xi(t) = x0 +εsin(ω0t), with x0−ε <
xi(t) < x0 +ε.

Under these assumptions, the general form of the interface perturbation in155

2The generalization to the case where the vibration has several components along the three
Cartesian axes can be carried out by following the same arguments, at the expense of more
cumbersome calculations.
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the time domain is

δΣα(x,E, t) = ∆Σα(E) [H(x− x0)−H(x− x0−εsin(ω0t))] , (14)

where ∆Σα(E) = ΣL
α(E)−ΣR

α(E) and H(z) is the Heaviside function, with H(z) = 1
for z ≥ 0, and H(z) = 0 otherwise. Observe that δΣα(x,E, t) is non-zero only in
the region traversed by the vibrating interface, namely, x0−ε ≤ x ≤ x0 +ε.

3.1. The ε/d approximation160

Before investigating the behaviour of the exact source term in Eq. (14), it is
instructive to consider the ε/d approximation (Pazsit, 1977). When the ampli-
tude ε of the perturbation is small as compared to d, Eq. (14) can be expanded in
powers of ε, by using the Taylor series

H(z +ε) = H(z) +εδ(z) +
ε2

2
δ′(z) + · · · , (15)

δ(z) and δ′(z) being the delta distribution and its derivative, respectively. We165

therefore have

δΣα(x,E, t) = ∆Σα(E)
[
εsin(ω0t)δ(x− x0)−

ε2 sin2(ω0t)
2

δ′(x− x0) + · · ·

]
, (16)

whose effect is spatially localized at the stationary position x0 of the interface.
Now, by using

F [sin(ω0t)] = −iπ [δ(ω−ω0)−δ(ω+ω0)] (17)

and
F [sin2(ω0t)] = πδ(ω)−

π

2
[δ(ω−2ω0) +δ(ω+ 2ω0)] (18)

we obtain the Fourier-transformed expansion

δΣα(x,E,ω) =∆Σα(E)[−iπεδ(x− x0)δ(ω−ω0)

+
π

4
ε2δ′(x− x0)δ(ω−2ω0) + · · · ], (19)

where we have neglected the contributions associated to ω = 0 and to negative170

frequencies, for reasons that will be discussed later. In the Fourier domain, the
effect of an interface periodically vibrating at a frequency ω0 is thus mirrored
in an infinite sum of contributions corresponding to discrete frequencies, each
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x

−
=[δΣα(x)]

∆Σα

x0 x0 +εx0−ε

π/2

ω0 x

−
<[δΣα(x)]

∆Σα

x0 x0 +εx0−ε

π/4
2ω0

Figure 1: The spatial shape of the noise source. Comparison between the ε/d approximation
(plotted as a dashed line, using the nascent functions to represent the singular spatial behaviour
located at the interface) and the exact representation (plotted as solid line). Left: the imaginary
part of the component at ω0; right: the real part of the component at 2ω0.

multiple of the fundamental frequency ω0 of the forcing function and with de-
creasing amplitudes.175

Although many authors have pointed out that the second harmonic might in
some cases be relevant (Lucia et al., 1973; Antonopoulos-Domis, 1976; Pazsit,
1977, 1984), the Taylor expansion in Eq. (19) has been truncated at the first
order in most of the previous works concerning neutron noise, thus including
the contribution of the first harmonic alone. In view of the functional form of180

Eq. (19), one might suppose that the contribution of the second harmonic at 2ω0
is ε times smaller than that of the first harmonic at ω0. However, expression (19)
is composed of a series of increasingly singular spatial functions localized at
the interface position x0. A common approximation consists in smoothing these
contributions over the spatial region of the vibration, which is expedient for a185

numerical treatment (Vidal-Ferrándiz et al., 2020). For small ε, the delta distri-
bution can be approximated by a suitable nascent delta function Fε(x) of the kind

δ(x) ' Fε(x) =
1
ε

F
( x
ε

)
, (20)

with F(z) being normalized 3 with respect to z. A widely adopted choice is to

3By a change of variables, it follows that Fε(x) is also normalized with respect to x.
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assume190

Fε(x) =
1
2ε
|x∈[−ε,ε], (21)

so that the ε term at the denominator cancels out with the prefactor of the first-
order contribution in the Taylor expansion. As for the derivative of the delta
distribution in the expansion given in Eq. (19), a convenient choice is the hat
function

Gε(x) =
1
ε

(
1−

x
ε

sign
( x
ε

))
|x∈[−ε,ε]. (22)

We therefore have195

δ′(x) '
∂

∂x
Gε(x) = −

1
ε2 sign

( x
ε

)
|x∈[−ε,ε], (23)

so that ε2 term at the denominator cancels out with the prefactor of the second-
order contribution in the Taylor expansion.

Within the limits of the use of nascent functions to describe the singular
spatial behaviour of the ε/d approximation, the first harmonic ω0 will be thus
associated to a negative imaginary contribution of amplitude π/2, spatially flat200

over the vibrating region, whereas the second harmonic 2ω0 will be associated
to a negative real contribution of amplitude π/4 (i.e., only half of the previous),
spatially flat over the vibrating region on each side of the interface but changing
sign across x0 (see Fig. 1 for an illustration). These findings suggest that the
effects of the second harmonic cannot be neglected a priori: under certain cir-205

cumstances, basically depending on the spatial shape of the fundamental flux ϕc
within the vibrating region 4, there might be a subtle competition between the
Fourier component at ω0 and the one at 2ω0.

3.2. Analysis of the exact noise source
Bearing in mind the behaviour of the ε/d approximation, we can now ex-

amine the exact noise source for a periodically vibrating interface. Let us first
consider the region x > x0, where

δΣR
α(x,E, t) =∆Σα(E) [1−H(x− x0−εsin(ω0t))] =

∆Σα(E)H(εsin(ω0t)− x + x0). (24)

4Recall that the expression of the noise source is −δB(ω)ϕc.
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In this case, the Heaviside function is equal to unity when210

sin(ω0t) ≥
x− x0

ε
, (25)

and zero otherwise, i.e., between time

τ(x, x0) =
1
ω0

arcsin
( x− x0

ε

)
(26)

and T0/2−τ(x, x0) = π/ω0−τ(x, x0). This condition yields a rectangular wave (Rou-
chon, 2016)

δΣR
α(x,E, t) =

∆Σα(E)

1
2
−
ω0τ(x, x0)

π
+ 2

∞∑
n=1

sin
(

nπ
2 −nω0τ(x, x0)

)
nπ

cos
(nπ

2
−nω0t

) , (27)

whose Fourier transform yields

δΣR
α(x,E,ω) =

∆Σα(E)

cR
0 (x, x0)δ(ω) +

∞∑
n=1

cR
n (x, x0)

[
δ(ω−nω0) +δ(ω+ nω0)einπ

] . (28)

Equation (28) defines an infinite sum of contributions corresponding to dis-
crete frequencies ±nω0, n = 0,1, · · · , multiple of the fundamental frequency ω0,
in analogy with the findings for the ε/d approximation. The space-dependent
Fourier coefficients appearing in Eq. (28) are given by215

cR
0 (x, x0) = π−2ω0τ(x, x0) = π−2arcsin

( x− x0

ε

)
(29)

and

cR
n (x, x0) = 2

sin
(

nπ
2 −nω0τ(x, x0)

)
n

e−in π2 = 2
sin

(
narccos

(
x−x0
ε

))
n

e−in π2 (30)

for n ≥ 1, whose amplitude decreases with increasing n. In particular, the coeffi-
cient corresponding to the first harmonic at ω0 is negative and imaginary:

cR
1 (x, x0) = −2i

√
1−

( x− x0

ε

)2
; (31)
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for the second harmonic at 2ω0 the coefficient is negative and real:

cR
2 (x, x0) = −2

( x− x0

ε

) √
1−

( x− x0

ε

)2
. (32)

More generally, all odd coefficients are imaginary, and all even coefficients are220

real. The spatially-averaged contributions are given by c̄R
0 = 2,

c̄R
1 = −

π

2
i, (33)

and

c̄R
n =

1
ε

∫ x0+ε

x0

cR
n (x, x0)dx =

1 + e−iπn

1−n2 (34)

for n ≥ 2. This yields in particular

c̄R
2 = −

2
3
. (35)

The amplitude of the source term corresponding to the second harmonic is about
twice as small as the one of the first harmonic, which is again consistent with the225

ε/d approximation. Observe that c̄R
1 is the only non-vanishing spatially-averaged

coefficient for odd n.
For the region x < x0, we have

δΣL
α(x,E, t) = −∆Σα(E)H(x− x0−εsin(ω0t)). (36)

In this case, the Heaviside function is equal to unity when

sin(ω0t) ≤
x− x0

ε
, (37)

and zero otherwise, i.e., between time T0/2 + τ(x, x0) and T0 − τ(x, x0). This
condition defines a rectangular wave that is shifted by T0/2 with respect to the
one for the region x > x0. By applying the Fourier transform, we have thus

δΣL
α(x,E,ω) =

∆Σα(E)

cL
0 (x, x0)δ(ω) +

∞∑
n=1

cL
n (x, x0)

[
δ(ω−nω0) +δ(ω+ nω0)einπ

] , (38)

where cL
n (x, x0) = cR

n (x, x0) for n ≥ 1, and cL
0 (x, x0) = cR

0 (x, x0)−2π. The spatially-230
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averaged contributions are given by

c̄L
n =

1
ε

∫ x0

x0−ε
cL

n (x, x0)dx, (39)

which yields c̄L
0 = −c̄R

0 , c̄L
1 = c̄R

1 , c̄L
n = 0 for odd n > 1, and c̄L

n = −c̄R
n for even n ≥ 2.

The spatial behaviour of the exact noise source is illustrated in Fig. 1.

3.3. Multiple interfaces
So far we have examined the effects of a single vibrating interface. The235

case of a region of size d vibrating into a host material can be dealt with by
considering the linear superposition of the effects of two vibrating interfaces,
each located at the boundaries of the region 5. In this case, the terms ∆Σα(E)
corresponding to the respective boundaries will have opposite signs, so that one
might possibly expect interference phenomena due to the simultaneous presence240

of two vibrating interfaces. The intensity of the interference of the interfaces
will depend on the interplay between the vibration amplitude ε and the linear
separation d between the boundaries: these effects will be discussed in Sec. 4,
with the help of a numerical example.

3.4. Impact of the source on the noise field245

Equations (28) and (38) completely define the Fourier spectrum of the noise
source corresponding to a vibrating boundary between two homogeneous re-
gions, for a sinusoidal displacement at a single frequency ω0. The system will
in principle respond to the vibration at several discrete frequencies nω0, despite
the impulsion being monochromatic at ω0. The noise response250

D(ω) =

∫
D

hD(r,Ω,E)δϕ(r,Ω,E,ω)drdΩdE (40)

for a given frequency ω = nω0 will depend on the source intensity (i.e., on the
Fourier coefficients cR,L

n (x, x0) and on the shape of the fundamental flux ϕc), and
on the noise detector function hD(r,Ω,E), where the integral is defined over a
region D of the phase space variables r,Ω,E. The noise source term can be
generally written as255

−δB(ω)ϕc = −
∑

n
δBnϕcδ(ω−nω0), (41)

5Here we will assume that ε < d/2; the general case of arbitrary ε and d is discussed in (Rou-
chon, 2016).
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with the appropriate noise source components δBn associated to the cross section
perturbations δΣα(ω), to be inferred from Eqs. (28) and (38). We thus expect the
noise field to be of the form (Sanchez, 2015; Rouchon, 2016)

δϕ(r,Ω,E,ω) =
∑

n
δϕn(r,Ω,E)δ(ω−nω0), (42)

where δϕn(r,Ω,E) is the solution of the exact Fourier-transformed noise equa-
tion (10) corresponding to the noise source component at frequency nω0, namely260

Bnδϕn +
1

2π

∑
m
δBn−mδϕm = −δBnϕc. (43)

Here we have denoted Bk = B(kω0) and δBk = δB(kω0) the noise operator and
the perturbation operator, respectively, evaluated at the discrete frequencies kω0
of the source. This yields an infinite system of coupled equations for the noise
components δϕn, where the noise field at a given discrete frequency nω0 depends265

on the behaviour of the noise field for all the other frequencies mω0. For the
orthodox approximation, Eq. (43) reduces to

Bnδϕn = −δBnϕc, (44)

which is an infinite system of fully decoupled linear equations 6 for the noise
components δϕn.

The noise source contributions due to negative frequencies n < 0 can be270

dealt with by observing that δϕ−n = δϕ†n, where † denotes complex conjuga-
tion. Finally, the noise source contribution −B0ϕc, which involves the coeffi-
cients cR,L

0 (x, x0) and therefore corresponds to ω = 0 (i.e., the time-average of the
perturbation), physically represents the offset due to the fact that the perturbation
will in general introduce a non-vanishing reactivity effect in the system. For the275

linearized equations (13) all the components are decoupled from each other, so
that the equation for n = 0 will not influence the others and can be disregarded
when solving for n ≥ 1 (Sanchez, 2015; Rouchon, 2016). The effect of −B0ϕc on
the non-perturbative Eqs. (43) is more involved and the discussion of this case is
deferred to Section 5.280

6As a consequence, the n-th harmonic of the noise field only depends on the n-th order term
of the noise source.
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4. Analysis of the linearized noise equations: a benchmark model

In order to assess the linearized equations (13) combined with the exact
model of the noise source (Eqs. (28) and (38)) or with the ε/d approximation
(Eq. (19)), we consider the case of neutron noise due to vibrating interfaces in
a benchmark configuration based on the rod model, which is possibly the sim-285

plest example of space- and direction-dependent transport problem (Wing, 1962;
Montagnini and Pierpaoli, 1971): particles move at constant speed υ along a line
(the rod) and undergo collision events with total cross section Σt(x). Only two
directions of flight are allowed, namely forward (Ω = +) and backward (Ω = −);
we furthermore assume that the angular distributions for scattering and fission290

are isotropic. For the sake of simplicity, we will consider a single precursor
family.

If we define δϕ+(x) and δϕ−(x) to be the (angular) neutron noise at position
x in the positive and negative direction, respectively, the linearized noise equa-
tion (13) takes the form of two coupled ordinary first-order differential equations[

i
ω

υ
±
∂

∂x
+Σt(x)

]
δϕ±(x,ω)

−
1
2

[
Σs(x) +

νpΣ f (x)
keff

+
λ

λ+ iω
νdΣ f (x)

keff

]
δϕ(x,ω) = Q±(x,ω), (45)

where δϕ(x) = δϕ+(x) + δϕ−(x) is the scalar noise integrated over the directions.
We will assume that the viable space is a segment [0,L], for some positive length
L, with leakage boundary conditions δϕ+(0,ω) = 0 and δϕ−(L,ω) = 0. In prin-
ciple, the Green’s function of Eq. (45) could be determined exactly, by slightly
adapting the analytical methods proposed in (Hoogenboom, 2008), and the solu-
tion would then follow by quadrature formulas with respect to the noise source
term Q±(x,ω). In practice, the resulting expressions are rather cumbersome, so
that a numerical solution by discretization and matrix inversion has been chosen
for this work. The noise source Q±(x,ω) = −δB(ω)ϕc is given by

Q±(x,ω) = −δΣt(x,ω)ϕ±c (x)

+
1
2

[
δΣs(x,ω) +

νpδΣ f (x,ω)
keff

+
λ

λ+ iω
νdδΣ f (x,ω)

keff

]
ϕc(x), (46)

where ϕ±c (x) is the fundamental mode corresponding to the stationary system,
with associated eigenvalue keff, and ϕc(x) =ϕ+

c (x)+ϕ−c (x). The quantity δΣα(x,ω)
is the Fourier-transformed, spatially dependent cross section perturbation for re-295
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0 xl xr L

Figure 2: The rod model: a segment [0,L] with three spatial regions separated by two interfaces
at xl and xr.

action α, whose functional form for a vibrating interface is given in Eqs. (28)
and (38).

The noise field δϕ±(x,ω) will be decomposed as

δϕ±(x,ω) =
∑

n
δϕ±n (x)δ(ω−nω0), (47)

where the components δϕ±n (x) satisfy

Bnδϕ
±
n (x) = −δBnϕ

±
c (x), (48)

which can be solved separately for each n ≥ 1 (Sanchez, 2015; Rouchon, 2016).300

In practice, instead of working with complex variables we will further decom-
pose the operators and the noise into real and imaginary parts, which is the strat-
egy adopted by most numerical solvers for the Fourier-domain linearized noise
equations, either deterministic or Monte Carlo (Rouchon, 2016).

To fix the ideas, we will consider a rod composed of three regions: a centrally305

located fuel pin within the inner boundaries at x = xl and x = xr, and a host
moderator in x ≤ xl and x ≥ xr, as illustrated in Fig. 2. This configuration is
inspired by the Colibri experimental setup, developed in the framework of the
CORTEX project, where one or several fuel rods of the Crocus zero-power pool-
type reactor are oscillated at different frequencies for the purpose of neutron310

noise analysis (Lamirand et al., 2020). The physical parameters for the three
regions are the following: for the moderator, we take Σs = 3 cm−1 and Σc = 0.2
cm−1; for the fuel, we take Σs = 1 cm−1, Σc = 1.2 cm−1 and Σ f = 0.98 cm−1.
The delayed neutron fraction is β = 7× 10−3 and the precursor decay constant
is λ = 0.08 s−1. The neutron speed is υ = 2.2× 105 cm/s. For our simulations,315

we will consider three symmetrical configurations with a decreasing size d for
the fuel region, and the average number νt = νp + νd of fission neutrons will be
adjusted in order to make the system critical: for the first, we take d = 6 cm,
with xl = 2 cm and xr = 8 cm, and νt = 2.2711; for the second, d = 4 cm, with
xl = 3 cm and xr = 7 cm, and νt = 2.30635; for the third, d = 2 cm, with xl = 4 cm320

and xr = 6 cm, and νt = 2.4250. In all cases, the total segment length is L = 10
cm and the number of spatial meshes for numerical integration is 8000. The
corresponding fundamental modes ϕc, normalized to unit, are shown in Fig. 3.
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Figure 3: Stationary solution for the rod model with a central fuel rod in a host moderator. Solid
lines: the critical flux ϕc(x). Dashed lines: the critical flux ϕ̂c(x) with average correction, as
detailed in Sec. 5.4. Left: fuel region size d = 6 cm; center: d = 4 cm; right: d = 2 cm.

As for the perturbation, we will assume that the forcing frequency is ω0/2π= 0.1
Hz, with a vibration amplitude ε = 0.5 cm, unless otherwise specified.325

4.1. A single vibrating interface
We start our analysis by considering the somewhat artificial case of a single

vibrating interface located at the right boundary of the fuel region (x = xr). The
main findings obtained from the application of the linearized equations coupled
to the exact model of the noise source or to the ε/d approximation are illustrated330

in Figs. 4-6 for the configuration with d = 4 cm. We have computed the first four
components, from ω0 to 4ω0. It turns out that the noise field δϕ(x,ω) is dom-
inated by the components corresponding to the first and the second harmonic:
this is due to the shape of the noise source, the first and the second harmonic
having the smallest number of nodes, and thus the smallest compensation effects335

between positive and negative contributions. Thus, the noise field for 3ω0 and
4ω0 will not be displayed.

Concerning the noise source, the real part of Q(x,ω) is dominated by the
component due to 2ω0, whereas the imaginary part of Q(x,ω) is dominated by
the component due to ω0. The real part of δϕ due to ω0 has approximately the340

same amplitude as the one due to 2ω0, but opposite sign. On the contrary, the
imaginary part of δϕ due to ω0 is considerably larger than the one due to 2ω0.
This behaviour is mirrored in the shape of the absolute value of δϕ (Fig. 6): an
hypothetical noise detector would show a peak at ω0 whose intensity would be
much stronger than at 2ω0 at any spatial location within the rod.345

An interesting observation is that the ε/d approximation yields an accurate
estimate for the shape of the noise field, for both the first and the second har-
monic, despite some apparent discrepancies concerning the shape of the noise
source. Quite surprisingly, this holds true even for our choice of ε, which is
somewhat large as compared to the linear size d of the fuel region.350
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Figure 4: The noise source Q(x,ω) for a single vibrating interface at xr = 7. Left: real part; right:
imaginary part. Blue: harmonic component for ω0; red: 2ω0. Solid lines: exact source model;
dashed lines: ε/d approximation.

0 2 4 6 8 10
x

0.4

0.2

0.0

0.2

0.4

0.6

Re
[

(x
)/

c(x
)]

0 2 4 6 8 10
x

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

Im
[

(x
)/

c(x
)]

Figure 5: The normalized noise field for a single vibrating interface at xr = 7. Left: real part;
right: imaginary part. Blue: harmonic component for ω0; red: 2ω0. Solid lines: exact source
model; dashed lines: ε/d approximation.
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Figure 6: The normalized noise field for a single vibrating interface at xr = 7. Left: amplitude;
right: phase. Colors and line styles are the same as in Fig. 5.
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4.2. Two vibrating interfaces
We discuss next the more physical case of two interfaces vibrating in phase at

each end of the fuel region, each giving rise to the shapes discussed in Sec. 4.1,
but with opposite signs because of ∆Σα, which would mimic the effect of the fuel
pin being oscillated into the moderator. The main simulation results obtained355

from the application of the linearized equations coupled to the exact model of
the noise source or to the ε/d approximation are illustrated in Figs. 7-9 for the
configuration with d = 6 cm, in Figs. 10-12 for the configuration with d = 4 cm,
and in Figs. 13-15 for the configuration with d = 2 cm. The computed noise field
for 3ω0 and 4ω0 is again negligible with respect to that of the first two harmonics360

and will not be displayed.
As expected, at each interface the qualitative behaviour of the noise source is

similar to the case of the source corresponding to a single interface (see Figs. 7,
10 and 13). The real part of Q(x,ω) is dominated by the component due to 2ω0,
whereas the imaginary part of Q(x,ω) is dominated by the component due to ω0.365

However, the corresponding noise field δϕ(x,ω) has a distinct shape, because of
the linear superposition of the noise sources, which results in non-trivial interfer-
ence effects. The real part of δϕ(x,ω) is dominated by the component due to 2ω0
(Figs. 8, 11 and 14, left), which is symmetric with respect to the two interfaces
and thus leads to a constructive interference; for the same cases, the contribution370

of ω0 to the real part is on the contrary suppressed by a destructive interference.
Conversely, the imaginary part of δϕ(x,ω) is dominated by the component due to
ω0, which is anti-symmetric with respect to the two interfaces, and thus leads to a
destructive interference (Figs. 8, 11 and 14, right). Observe in particular that the
imaginary noise component due to ω0 has now a node at x = L/2, corresponding375

to the mid-point of the two interfaces. This behaviour is mirrored in the shape
of the amplitude of δϕ(x,ω) (Figs. 9, 12 and 15, left): the component due to ω0
is larger than the one due to 2ω0 far from the vibrating region; conversely, the
component due to 2ω0 becomes larger than the one due to ω0 within the vibrat-
ing region, where the first harmonic is suppressed. Again, the ε/d approximation380

yields an accurate estimate for the shape of the noise field, for both the first and
the second harmonic.

The linear separation d between xl and xr has a strong impact on the be-
haviour of the noise field. When reducing the size d of the fuel region by keeping
fixed the amplitude ε of the vibration, a striking phenomenon occurs: the real385

part of δϕ corresponding to the component due to 2ω0 increases dramatically
(Figs. 8, 11 and 14, left) and so does the corresponding amplitude of the noise
field (Figs. 9, 12 and 15, left). Since the component due to ω0 is comparatively
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much less sensitive to d, the amplitude of the noise field corresponding to the sec-
ond harmonic may become everywhere larger (and eventually much larger) than390

the one corresponding to the first harmonic, provided that the separation d of the
two interfaces is sufficiently small (see Fig. 15, left, for the configuration with
d = 2 cm). According to the linearized equations, an hypothetical noise detector
would thus show a peak at 2ω0 whose intensity would be much stronger than at
ω0 at any location within the rod. The same behaviour is observed when increas-395

ing the size of ε for a given d. These surprising features are consistent with the
recent findings related to Monte Carlo simulations of the linearized noise equa-
tions mentioned before. In general, we would expect that a linear system under
the effect of an external forcing function at a frequency ω0 should primarily re-
spond at the same frequency, except for special cases where the symmetries of400

the forcing function and/or the detectors might suppress the response at ω0 and
thus artificially promote the response at 2ω0. One then wonders whether the pre-
dictions of the linear theory in the Fourier domain are physically sound for the
configurations examined here.
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Figure 7: The noise source Q(x,ω) for two vibrating interfaces with d = 6 cm. Left: real part;
right: imaginary part. Blue: harmonic component for ω0; red: 2ω0. Solid lines: exact source
model; dashed lines: ε/d approximation for ω0 and 2ω0.

0 2 4 6 8 10
x

0.0

0.1

0.2

0.3

0.4

Re
[

(x
)/

c(x
)]

0 2 4 6 8 10
x

1.0

0.5

0.0

0.5

1.0

Im
[

(x
)/

c(x
)]

Figure 8: The normalized noise field for two vibrating interfaces with d = 6 cm. Left: real part;
right: imaginary part. Blue: harmonic component for ω0; red: 2ω0. Solid lines: exact source
model; dashed lines: ε/d approximation for ω0 and 2ω0.
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Figure 9: The normalized noise field for two vibrating interfaces with d = 6 cm. Left: amplitude;
right: phase. Colors and line styles are the same as in Fig. 8. Additionally, reference solutions
obtained by solving the time-dependent equations, as described in Sec. 5.1, are plotted as dotted
lines.
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Figure 10: The noise source Q(x,ω) for two vibrating interfaces with d = 4 cm. Left: real part;
right: imaginary part. Blue: harmonic component for ω0; red: 2ω0. Solid lines: exact source
model; dashed lines: ε/d approximation for ω0 and 2ω0.
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Figure 11: The normalized noise field for two vibrating interfaces with d = 4 cm. Left: real part;
right: imaginary part. Blue: harmonic component for ω0; red: 2ω0. Solid lines: exact source
model; dashed lines: ε/d approximation for ω0 and 2ω0.
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Figure 12: The normalized noise field for two vibrating interfaces with d = 4 cm. Left: amplitude;
right: phase. Colors and line styles are the same as in Fig. 11. Additionally, reference solutions
obtained by solving the time-dependent equations, as described in Sec. 5.1, are plotted as dotted
lines.
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Figure 13: The noise source Q(x,ω) for two vibrating interfaces with d = 2 cm. Left: real part;
right: imaginary part. Blue: harmonic component for ω0; red: 2ω0. Solid lines: exact source
model; dashed lines: ε/d approximation for ω0 and 2ω0.
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Figure 14: The normalized noise field for two vibrating interfaces with d = 2 cm. Left: real part;
right: imaginary part. Blue: harmonic component for ω0; red: 2ω0. Solid lines: exact source
model; dashed lines: ε/d approximation for ω0 and 2ω0.
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Figure 15: The normalized noise field for two vibrating interfaces with d = 2 cm. Left: amplitude;
right: phase. Colors and line styles are the same as in Fig. 14. Additionally, reference solutions
obtained by solving the time-dependent equations, as described in Sec. 5.1, are plotted as dotted
lines.
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5. Non-perturbative approach to the noise equations405

In order to ascertain whether the linearized noise equations in the Fourier
domain provide a faithful representation of the system behaviour in the pres-
ence of vibrating boundaries, reference solutions are required. For this purpose,
we analyze the rod problem using a time-domain solver, the non-perturbative
equations in the Fourier domain, and finally an average-corrected version of the410

non-perturbative equations in which a compensation is included for the possible
reactivity effect.

5.1. Reference solutions from a time-domain solver
We have developed a time-domain solver for the time-dependent rod model

equations, namely,[
1
υ

∂

∂t
±
∂

∂x
+Σt(x, t)

]
ϕ±(x, t) =

1
2

[
Σs(x, t) +

νpΣ f (x, t)
keff

]
ϕ(x, t) +

1
2
λc(x, t)

∂

∂t
c(x, t) =

νdΣ f (x, t)
keff

ϕ(x, t)−λc(x, t), (49)

where ϕ±(x, t) is the angular flux and ϕ(x, t) = ϕ+(x, t) +ϕ−(x, t) is the scalar flux
integrated over the directions. The viable space is again the segment [0,L], with415

leakage boundary conditions ϕ+(0, t) = 0 and ϕ−(L, t) = 0. The initial conditions
for Eq. (49) correspond to a critical state:

c(x,0) =
1
λ

νdΣ f (x,0)
keff

ϕ(x,0), (50)

where ϕ(x,0) = ϕc(x) is the reactor fundamental mode. The functional behaviour
of the time-dependent cross sections for reaction α is given by

δΣα(x, t) = ∆Σα [H(x− x0)−H(x− x0−εsin(ω0t))] , (51)

where ∆Σα = ΣL
α−ΣR

α is the difference between the spatially homogeneous cross420

sections at the left and the right of each interface located at x0.
Since the system of equations in (49) is stiff because of the large separation

between the typical time scale of the neutrons and the one of the precursors, in
order to determine the behaviour of the angular flux ϕ±(x, t) the precursor equa-
tion has been discretized in time by using an explicit Euler scheme, whereas the425

Boltzmann equation for the neutrons has been discretized by using a backward
Euler method (Vidal-Ferrándiz et al., 2020). The equations are integrated over
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a domain [0,T ], starting from the equilibrium conditions at t = 0. For our ex-
amples, we have taken T = 500 s. Once the scalar neutron field ϕ(x, t) has been
determined at a collection of hypothetical detectors located at several spatial lo-430

cations 0 ≤ x j ≤ L within the domain, the neutron noise field is then obtained by
taking

δϕ(x j, t) =
ϕ(x j, t)−ϕc(x j)

ϕc(x j)
. (52)

Finally, the Fourier-transformed neutron noise field is computed by taking the
FFT of the expression derived in Eq. (52), over the discrete grid of times 0 ≤
ti ≤ T for which the time-dependent noise field is available, and for each spa-435

tial location x j. We will thus have reference solutions for the noise field within
the system, to be compared with the results stemming from the linearized equa-
tion (45) in the Fourier domain. For the calculations described here, we have
chosen 400 locations x j, evenly distributed in [0,L].

The simulation findings are illustrated in Fig. 9 for d = 6 cm, Fig. 12 for440

d = 4 cm, and Fig. 15 for d = 2 cm. For the first harmonic, the amplitude and the
phase of noise field stemming from the linearized noise equations in the Fourier
domain are in good agreement with the reference solution obtained by integrat-
ing the kinetic equations. However, for the second harmonic the linearized noise
equations completely fail to address the features of the amplitude and the phase,445

regardless of the use of the exact model or the ε/d model for the noise source: the
phase should have a step-wise variation within the vibrating region, and the am-
plitude should be much smaller. In particular, the abrupt increase of the second
harmonic for small d seems to be an artefact induced by the orthodox lineariza-
tion.450

5.2. Non-perturbative equations in the Fourier domain
For the benchmark configurations discussed in this work, the reference solu-

tions obtained from the time-domain analysis suggest that the linear approxima-
tion in the Fourier domain is appropriate for the first harmonic, but is not capable
of reproducing the key properties of the amplitude and phase of the noise field455

for the second harmonic. In this Section we will explore the impact of the non-
perturbative noise equations (43) on the accuracy of the system response in the
Fourier domain.

In practice, a numerical solution of Eq. (43) requires a truncation of the in-
finite sum over m, which can be obtained by applying a cut-off at m = ±M: this460

leads to a closed system, containing only terms for which an explicit equation
is available. This system can be solved by iteration as follows (Sanchez, 2015;
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Rouchon and Sanchez, 2015; Rouchon, 2016): first, we solve the linearized prob-
lem

Bnδϕ
(0)
n = −δBnϕc, (53)

in order to initialize the noise field δϕ(0)
n for each frequency component nω0;465

then, for each iteration j ≥ 1 we compute the effective noise source

Q( j)
n (ω) = −δBnϕc−

1
2π

∑
m,n

δBn−mδϕ
( j−1)
m ; (54)

finally, the noise field is determined by solving[
Bn +

1
2π
δB0

]
δϕ

( j)
n = Q( j)

n (ω). (55)

This procedure is iterated until appropriate convergence criteria on the norm
||δϕ

( j)
n − δϕ

( j−1)
n || are met. At convergence, j→∞, the noise field δϕ(∞)

n formally
satisfies a linearized equation where the operator Bn is replaced by the modified470

operator Bn + δB0/2π and the source −δBnϕc is replaced by the effective source
Q(∞)

n (ω). The term δB0 is kept on the left hand side of the equation: numerical
investigations have shown that such operator shift can contribute to the stability
of the iterations (Mancusi and Zoia, 2018). Since the equations are coupled, the
components at each frequency nω0 will also depend on δϕ0, which is related to475

the reactivity offset and was dropped in the linearized equations: this term will
need a distinct treatment, as shown in the following.

5.3. The rod model revisited
Based on the analysis of the linear system, it appears that the two major

contributors to the behaviour of the noise field are ω0 and 2ω0, the components480

corresponding to n≥ 3 being small for the configurations considered in this work.
We can thus safely assume that the dominant portion of the corrections due to
the convolution term in Eq. (43) will be carried by δϕ1 and δϕ2, and choose the
cut-off M = 4. For the time being, we also neglect the component at ω = 0 by
artificially setting δϕ0 = 0.485

We revisit then the rod model with two vibrating interfaces. The convergence
of the non-perturbative corrections is achieved in about 20 iterations for d = 6 cm,
30 iterations for d = 4 cm and 70 iterations for d = 2 cm. The numerical solutions
for the non-perturbative noise equations are compared to those of the linearized
equations in Figs. 16-18 for the configuration with d = 6, Figs. 19-21 for the490

configuration with d = 4 cm, and Figs. 22-24 for the configuration with d = 2
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cm. Concerning the effective noise source, the component at 2ω0 is slightly but
systematically affected by the additional terms given by the convolution product,
whereas the component at ω0 is almost unaffected (Figs. 16, 19 and 22).

Despite these modifications of the effective source being rather small, the495

corresponding impact on the noise field is extremely strong, which shows that
the symmetry-induced compensations occurring in linearized equations are bro-
ken by the presence of the coupling terms of the non-perturbative equations. In
particular, the real part of the second harmonic is dramatically decreased with
respect to the linearized noise equations (Figs. 17, 20 and 23, left), which in turn500

is mirrored by a decrease of the amplitude of this harmonic (Figs. 18, 21 and24,
left). Conversely, the component due to ω0 is minimally modified by the non-
perturbative terms. Eventually, within the framework of the non-perturbative
noise equations the first harmonic dominates everywhere, except for the vibrat-
ing region, where the absolute value of δϕ1(x) is depressed because of the anti-505

symmetry of the imaginary part of the component due to ω0.
The noise fields obtained by using the non-perturbative equations have been

compared to the reference solutions in Figs. 18, 21 and 24. For the first har-
monic, the corrections due to the non-perturbative terms are rather small, and the
overall agreement with respect to the reference solutions are good, except for the510

case of the smallest fuel region (d = 2 cm), where a slight but systematic discrep-
ancy is found far from the vibrating region. On the contrary, the impact of the
non-perturbative terms on the second harmonic is very strong: for all the tested
configurations, the non-linearized noise equations perform better than the lin-
earized equations in reproducing the spatial behaviour of the second harmonic,515

for both amplitude and phase (compare Figs. 18, 21 and 24 against Figs. 9, 12
and 15, respectively). However, for decreasing d the discrepancy with respect to
the reference solution tends to increase. This is particularly apparent for the con-
figuration with d = 2 cm: while for the other configurations the non-perturbative
equations were able to correctly reproduce the phase jump of the second har-520

monic within the vibrating region (which the linearized equations failed to do),
for this case the predicted phase is spatially flat, and the shape of the amplitude is
correspondingly far from the reference curve. The origin of such discrepancies
will be investigated in the next section.

5.4. Average-corrected noise equations525

In the customary derivation of the noise equations, the neutron noise is de-
fined as the time-dependent deviation with respect to the steady-state flux ϕc
satisfying Eq. (1). This hypothesis underlies the entire formalism for both the lin-
earized and the non-perturbative noise equations in the Fourier domain. Actually,
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some recent works have suggested that the traditional decomposition of the time-530

dependent neutron flux as in Eq. (4) might not be the wisest choice (Sanchez,
2015; Rouchon and Sanchez, 2015; Rouchon, 2016). The neutron flux ϕc cor-
responds to the initial condition of the system, before the perturbation is intro-
duced; once the perturbation is effective, the net reactivity induced by the per-
turbation will be compensated by control rod adjustments, physical feedbacks535

such as Doppler effect, or any other external control mechanisms, which will
prevent the system from drifting, and the reactor will asymptotically reach a new
steady state ϕ̂c , ϕc. In order to mimic these effects, we will simply assume
that the average number of fission neutrons is rescaled by k̂eff (Sanchez, 2015),
where k̂eff , keff is the new fundamental eigenvalue associated to the steady state540

including the perturbation (Sanchez, 2015; Rouchon and Sanchez, 2015; Rou-
chon, 2016).

Correspondingly, we will define the neutron noise δϕ̂ as

ϕ̂(r,Ω,E, t) = ϕ̂c(r,Ω,E) +δϕ̂(r,Ω,E, t), (56)

which ensures that the noise will have a time-average equal to zero, i.e.,

〈δϕ̂〉 ≡ lim
T→∞

1
2T

∫ T

−T
δϕ̂(r,Ω,E, t)dt = 0, (57)

where we have used the short-hand notation 〈·〉 for the time average. This proce-545

dure allows rigorously having δϕ̂0 = δϕ̂(ω= 0) = 0, which minimizes the possible
bias in the non-perturbative equations due to having artificially set δϕ0 = 0 in the
previous section.

For this purpose, we decompose the perturbed Boltzmann operator as

Bp = B̂(t) +δB̂(t), (58)

and we set550

B̂(t) = B(t) +A (59)

and
δB̂(t) = δB(t)−A, (60)

where A is a suitable time-independent operator, to be determined. We further
require ϕ̂c to satisfy the eigenvalue equation B̂cϕ̂c = 0, where B̂c is the stationary
operator associated to B̂(t). The resulting noise equation in the time domain
reads555 [

B̂(t) +δB̂(t)
]
δϕ̂(t) = −δB̂(t)ϕ̂c, (61)
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which can be then Fourier-transformed to yield

B̂nδϕ̂n +
1

2π

∑
m
δB̂n−mδϕ̂m = −δB̂nϕ̂c (62)

for the noise components at discrete frequencies nω0. Then, a sufficient (albeit
non-unique) condition to ensure that δϕ̂0 = 0 is

Aϕ̂c = δB0ϕ̂c +
1

2π

∑
m
δB̂−mδϕ̂m. (63)

Thus, we formally set the operatorA to be (Sanchez, 2015)

A≡ δB0 +
1

2π

∑
m
δB̂−m

δϕ̂m

ϕ̂c
. (64)

Since A depends on ϕ̂c and δϕ̂n, which are the solutions of the problem that560

we are attempting to solve, an iterative strategy must be used in order to de-
termine the noise field corresponding to the average-corrected non-perturbative
noise equations (Rouchon and Sanchez, 2015; Rouchon, 2016). We first solve
the non-perturbative noise equations without taking into account the average cor-
rection, as detailed in Sec. 5.2, and estimate δϕn. Then, we determineA based on565

Eq. (64) and compute the modified operators B̂n and δB̂n in the Fourier domain.
This allows computing the new steady-state flux ϕ̂c and successively updating
the noise field δϕ̂n. By iterating these steps, this procedure eventually converges
towards the average-corrected δϕ̂n satisfying δϕ̂0 = 0.

We have numerically assessed the impact of using the average-corrected570

noise equations for the benchmark examples considered above. The correspond-
ing average-corrected stationary fluxes ϕ̂c(x) are contrasted to the respective
ϕc(x) in Fig. 3. The solutions of the average-corrected noise equations converge
in about 10 external iterations for the operators. The main findings for the result-
ing noise fields δϕ̂n are then illustrated in Figs. 16-18 for the configuration with575

d = 6 cm, Figs. 19-21 for the configuration with d = 4 cm, and Figs. 22-24 for the
configuration with d = 2 cm. For the first harmonic, the average-corrected equa-
tions show only slight deviations as compared to the previous analysis for d = 6
cm and d = 4 cm; nonetheless, for the case d = 2 cm the average-corrected equa-
tions considerably improve the agreement with the reference solution, especially580

outside the vibrating region. The overall conclusion is that the noise equations
for the first harmonic are rather robust, in the sense that the linearized, non-
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perturbative and average-corrected equations yield almost identical predictions
concerning the shape of the noise field. For the second harmonic, on the other
hand, the average-corrected equations are key in reducing the bias with respect585

to the reference solution: the phase shift within the vibrating region and the spa-
tial shape of the noise field of the amplitude are correctly recovered, even for the
case d = 2 cm. Slight residual discrepancies between the Fourier-domain noise
equations and the reference solutions can be attributed to the numerical accuracy
of the time integration, to the discretization error of both the time and frequency590

domain approaches, and to the truncation to the order M in the treatment of the
non-perturbative equations.
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Figure 16: The noise source Q(x,ω) for two vibrating interfaces with d = 6 cm. Left: real part;
right: imaginary part. Blue: harmonic component for ω0; red: 2ω0. Solid lines: non-perturbative
equations; dashed lines: linearized equations.
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Figure 17: The normalized noise field for two vibrating interfaces with d = 6 cm. Left: real part;
right: imaginary part. Blue: harmonic component for ω0; red: 2ω0. Solid lines: non-perturbative
equations; dashed lines: linearized equations.
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Figure 18: The normalized noise field for two vibrating interfaces with d = 6 cm. Left: amplitude;
right: phase. Solid lines: non-perturbative equations (Sec. 5.2); dotted lines: reference solution
from the time-domain solver (Sec. 5.1); dotted-dashed lines: non-perturbative equations with
average correction (Sec. 5.4).
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Figure 19: The noise source Q(x,ω) for two vibrating interfaces with d = 4 cm. Left: real part;
right: imaginary part. Blue: harmonic component for ω0; red: 2ω0. Solid lines: non-perturbative
equations; dashed lines: linearized equations.
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Figure 20: The normalized noise field for two vibrating interfaces with d = 4 cm. Left: real part;
right: imaginary part. Blue: harmonic component for ω0; red: 2ω0. Solid lines: non-perturbative
equations; dashed lines: linearized equations.
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Figure 21: The normalized noise field for two vibrating interfaces with d = 4 cm. Left: amplitude;
right: phase. Solid lines: non-perturbative equations (Sec. 5.2); dotted lines: reference solution
from the time-domain solver (Sec. 5.1); dotted-dashed lines: non-perturbative equations with
average correction (Sec. 5.4).
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Figure 22: The noise source Q(x,ω) for two vibrating interfaces with d = 2 cm. Left: real part;
right: imaginary part. Blue: harmonic component for ω0; red: 2ω0. Solid lines: non-perturbative
equations; dashed lines: linearized equations.
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Figure 23: The normalized noise field for two vibrating interfaces with d = 2 cm. Left: real part;
right: imaginary part.Blue: harmonic component for ω0; red: 2ω0. Solid lines: non-perturbative
equations; dashed lines: linearized equations.
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Figure 24: The normalized noise field for two vibrating interfaces with d = 2 cm. Left: amplitude;
right: phase. Solid lines: non-perturbative equations (Sec. 5.2); dotted lines: reference solution
from the time-domain solver (Sec. 5.1); dotted-dashed lines: non-perturbative equations with
average correction (Sec. 5.4).
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6. Conclusions

In this work we have analyzed the behaviour of the neutron noise equations
for a simple benchmark configuration consisting in a fuel rod periodically vi-595

brating at the fundamental frequency ω0 in a host moderator. In this framework,
we have elucidated how the role of the noise source, and in particular the im-
pact of the higher-order terms, is entangled with the structure of the noise equa-
tions. We have shown that the non-perturbative noise equations (as opposed to
the widely used linearized noise equations) are in some case mandatory in or-600

der for the Fourier-domain analysis to be consistent with the reference solutions
obtained by solving the time-dependent transport equations. A further improve-
ment comes from the use of the average-corrected noise equations, which can
take into account the reactivity offset due to the presence of the perturbation.
The discrepancy between the predictions of these three families of noise equa-605

tions (linearized, non-perturbative and average-corrected) depends on the noise
component δϕn to be determined and on the system under investigation. For the
benchmark selected in this work, the three equations provide consistent estimates
for the spatial shape of the first harmonic δϕ1 at ω0; however, the differences be-
tween the three approaches are dramatic for the second harmonic δϕ2 at 2ω0: the610

linearized equation might hint that the second harmonic is everywhere larger than
the first, which contradicts the reference solution; the non-perturbative equations
allow obtaining closer, albeit still not entirely accurate, estimates; the average-
corrected equations finally yield spatial shapes in very good agreement with the
reference solution.615

The analysis carried out in this work seems thus to suggest that the non-
perturbative, and even better the average-corrected, noise equations are manda-
tory in order to properly discriminate the double frequency effect of neutron
noise possibly measured in detectors, especially in view of comparing the sim-
ulation results to experimental measurements. However, these conclusions hold620

true for the configurations investigated here, namely a small symmetrical sys-
tem in which the perturbation is centrally located, and their more broad validity
for complex systems (three-dimensional geometries, realistic material composi-
tions and cross sections, and multi-group or continuous-energy transport) should
be carefully probed. In this context, an important issue concerns the role of625

symmetries, as apparent from the following example. For the configuration ex-
amined here, the growth of the second harmonic with respect to the first for
decreasing d appears to be an artefact of the linearized equations, and disappears
when introducing the non-perturbative corrections. However, if we had taken a
spatially-integrated detector symmetric with respect to the center of the rod, the630
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dominant noise component would have been at 2ω0, independently of whether
we had used the linearized or non-perturbative equations: since the noise field re-
lated to the first harmonic is anti-symmetric with respect to the center of the sys-
tem, its integral over a symmetric detector is vanishing and the second harmonic
would be the only surviving noise component. Similarly, the impact of the non-635

perturbative corrections on the first and second harmonic, which are intimately
related to the behaviour of the fundamental neutron flux within the vibrating re-
gion, strongly depends on the symmetries of the system. Future work will be
aimed at exploring more general cases, in order to further unveil the features the
noise equations.640
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