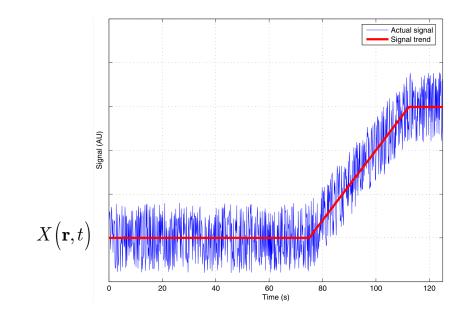


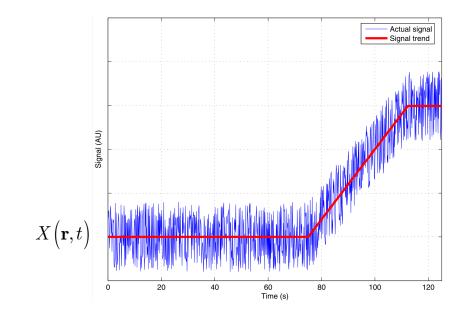
SNETP Forum 2021

February 2-4, 2021, online


Prof. Christophe Demazière, Chalmers University of Technology

demaz@chalmers.se

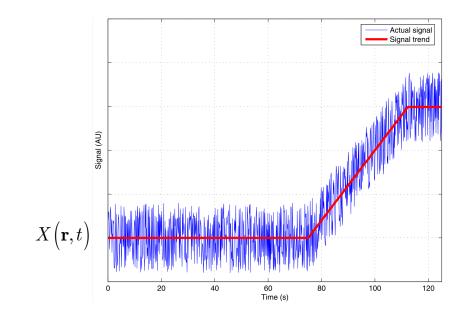
• Fluctuations always existing in dynamical systems even at steady stateconditions:



Conceptual illustration of the possible timedependence of a measured signal from a dynamical system

$$X(\mathbf{r},t) = X_0(\mathbf{r},t) + \delta X(\mathbf{r},t)$$

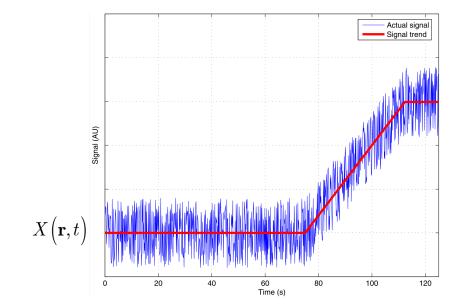
• Fluctuations always existing in dynamical systems even at steady stateconditions:


Conceptual illustration of the possible timedependence of a measured signal from a dynamical system

$$X(\mathbf{r},t) = X_0(\mathbf{r},t) + \delta X(\mathbf{r},t)$$

actual signal

• Fluctuations always existing in dynamical systems even at steady stateconditions:


Conceptual illustration of the possible timedependence of a measured signal from a dynamical system

$$X(\mathbf{r},t) = \underbrace{X_0(\mathbf{r},t)}_{\delta X(\mathbf{r},t)} + \delta X(\mathbf{r},t)$$

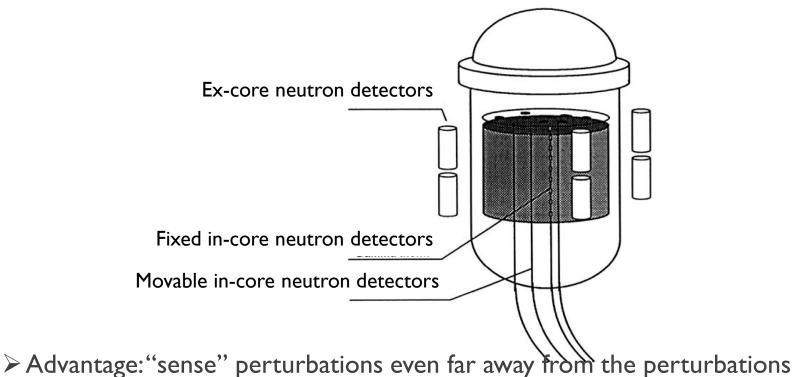
signal trend or mean

• Fluctuations always existing in dynamical systems even at steady state-conditions:

Conceptual illustration of the possible timedependence of a measured signal from a dynamical system

$$X(\mathbf{r},t) = X_0(\mathbf{r},t) + \underbrace{\delta X(\mathbf{r},t)}_{0}$$

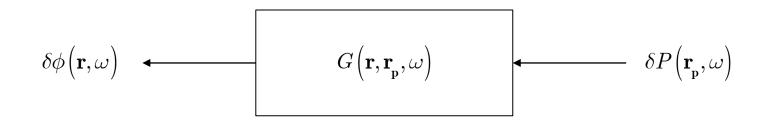
fluctuations or "noise"


>Fluctuations carrying some valuable information about the system dynamics

- Fluctuations could be used for "diagnostics", i.e.:
 - Early detection of anomalies
 - Estimation of dynamical system characteristics
 - ... even if the system is operating at steady-state conditions
- Fluctuations in the neutron density in nuclear reactors can be used for core diagnostics and monitoring

• Neutron detectors present both in-core and ex-core:

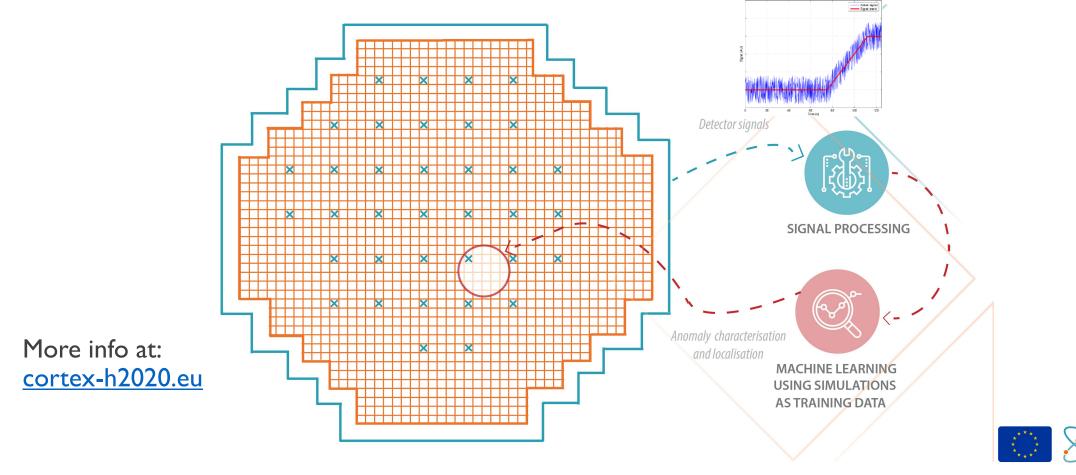
Disadvantage: western-type reactors do not always contain many in-core neutron detectors



- Neutron noise diagnostics requires establishing relationships between neutron detectors and possible perturbations
- > The "reactor transfer function" $G(\mathbf{r}, \mathbf{r}_{\mathbf{p}}, \omega)$ needs to be determined

$$\delta\phi(\mathbf{r},\omega) \quad \longleftarrow \quad G(\mathbf{r},\mathbf{r}_{\mathbf{p}},\omega) \quad \longleftarrow \quad \delta P(\mathbf{r}_{\mathbf{p}},\omega)$$

• But noise diagnostics requires the inversion of the reactor transfer function $G(\mathbf{r}, \mathbf{r}_{p}, \omega)$

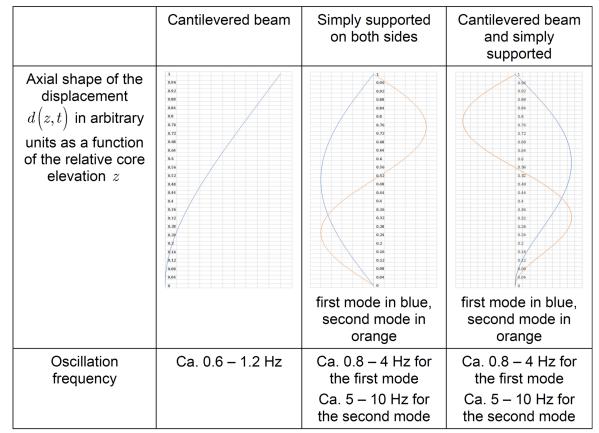

• But noise diagnostics requires the inversion of the reactor transfer function $G(\mathbf{r}, \mathbf{r}_{p}, \omega)$

>Machine learning could be used for that purpose

Unfolding possible even if very few detectors available (due to the spatial correlations existing between a localized perturbation and its effect throughout the nuclear core)

• Overall principle of the Horizon 2020 CORTEX project:

- Modelling of the neutron noise includes two basic steps:
 - Modelling of the noise source in terms of macroscopic cross-section perturbations
 - Modelling of the neutron noise induced by fluctuations of the macroscopic cross-section perturbations


- Perturbations can be defined:
 - In the time-domain, more or less as they are, with limitations/approximations due to the mesh used.
 - In the frequency-domain, after typically a first-order approximation of the perturbation, subsequently followed by a Fourier transform + limitations/approximations due to the mesh used.
- Modelling possibly supplemented by other modelling tools (e.g. fluidstructure modelling tool)
- Noise source modelling strongly dependent on the choices made by the user

- Different scenarios investigated in CORTEX:
 - "Absorber of variable strength": localized perturbation of which its amplitude varies in time at a fixed position
 - "Vibrating absorber": lateral movement of a weak absorber
 - Axially-travelling perturbations
 - Inlet flow rate perturbations
 - Core barrel vibrations: several types of vibrations possible
 - Fuel assembly vibrations: several possible modes of vibrations

Possible axial vibration modes for fuel assemblies:

- Once the noise source is modelled, need to estimate the response of the neutron flux to the applied perturbation
- Could be done using the neutron transport equation (Boltzmann equation):

$$\begin{split} & \frac{1}{v(E)} \frac{\partial}{\partial t} \psi \left(\mathbf{r}, \mathbf{\Omega}, E, t \right) \\ &= -\mathbf{\Omega} \cdot \boldsymbol{\nabla} \psi \left(\mathbf{r}, \mathbf{\Omega}, E, t \right) - \boldsymbol{\Sigma}_t \left(\mathbf{r}, E, t \right) \psi \left(\mathbf{r}, \mathbf{\Omega}, E, t \right) \\ &+ \int_{(4\pi)} \int_0^\infty \boldsymbol{\Sigma}_s \left(\mathbf{r}, \mathbf{\Omega}' \to \mathbf{\Omega}, E' \to E, t \right) \psi \left(\mathbf{r}, \mathbf{\Omega}', E', t \right) d^2 \mathbf{\Omega}' dE' \\ &+ \frac{1}{4\pi} \int_{-\infty}^t \int_0^\infty \nu \left(E' \right) \boldsymbol{\Sigma}_f \left(\mathbf{r}, E', t' \right) \phi \left(\mathbf{r}, E', t' \right) \left[\left(1 - \beta \right) \chi^p \left(E \right) \delta \left(t - t' \right) + \sum_{i=1}^{N_d} \chi_i^d \left(E \right) \lambda_i \beta_i e^{-\lambda_i (t - t')} \right] dt' dE' \end{split}$$

- Different approaches possible:
 - Time-domain modelling

Advantages:

- Existing time-domain codes could be used
- Non-linear effects inherently accounted for
- Thermal-hydraulic feedback automatically taken into account

Disadvantages:

- Lengthy calculations
- Challenging to get a highly accurate solution for the noise
- Codes originally not developed for that purpose
- Lack of verification and validation for noise analysis

- Different approaches possible:
 - Frequency-domain modelling

Time-domain equations transformed into frequency-domain equations according to the following procedure:

- Splitting between mean values and fluctuations
- Linear theory used because of the smallness of the fluctuations
- Fourier-transform of the balance equations for the dynamical part only

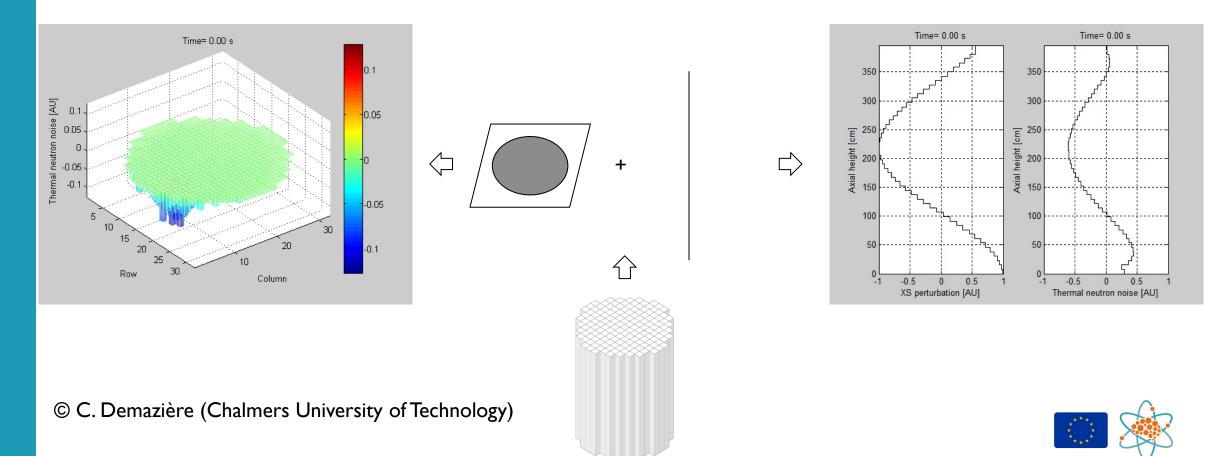
- Different approaches possible:
 - Frequency-domain modelling Advantages:
 - Codes specifically developed for noise analysis, thus usually fully verified (validated?)
 - Highly accurate noise solution
 - Usually high flexibility in the modelling
 - Very fast calculations

Disadvantages:

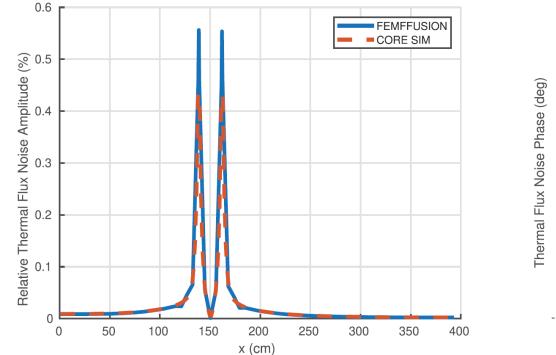
- No commercial code available
- Possible linear effects disregarded
- Thermal-hydraulic feedback generally not taken into account (but could be)

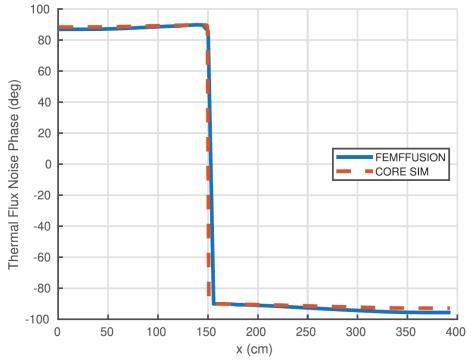
• Codes used in CORTEX:

Code name	Domain		Non-linear terms		Angular resolution		Spatial resolution		Approach	
	Time	Frequency	Not modelled	Modelled	Diffusion	Transport	Fine-mesh	Coarse-mesh	Deterministic	Probabilistic
SIMULATE-3K	\checkmark			\checkmark	✓			✓	✓	
DYN3D	\checkmark			\checkmark		\checkmark		\checkmark	\checkmark	
QUABBOX/ CUBBOX	\checkmark			\checkmark	✓			✓	✓	
PARCS	\checkmark			\checkmark	\checkmark	(✓)		\checkmark	\checkmark	
FEMFUSSION	\checkmark	\checkmark		\checkmark	\checkmark		\checkmark		\checkmark	
APOLLO3®	\checkmark			\checkmark		\checkmark	\checkmark		\checkmark	



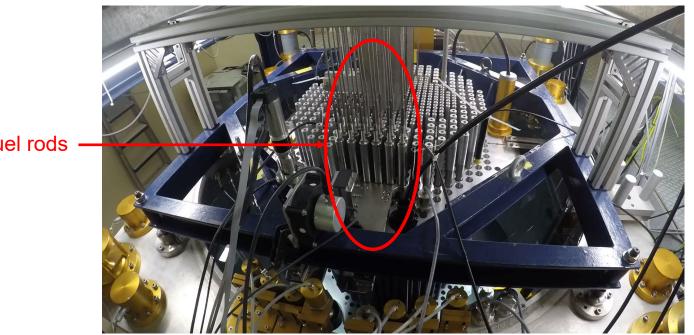
• Codes used in CORTEX:


Code name	Domain		Non-linear terms		Angular resolution		Spatial resolution		Approach	
	Time	Frequency	Not modelled	Modelled	Diffusion	Transport	Fine-mesh	Coarse-mesh	Deterministic	Probabilistic
CORE SIM		\checkmark	✓		✓			~	✓	
CORE SIM+		\checkmark	\checkmark		\checkmark		\checkmark		\checkmark	
Sn-based solver		\checkmark	\checkmark			\checkmark	\checkmark		\checkmark	
Extension of MCNP		\checkmark	\checkmark			\checkmark	\checkmark			\checkmark
Extension of TRIPOLI-4®		\checkmark	\checkmark			\checkmark	\checkmark			\checkmark
Equivalence- based method using MCNP		\checkmark	✓			\checkmark		\checkmark		\checkmark

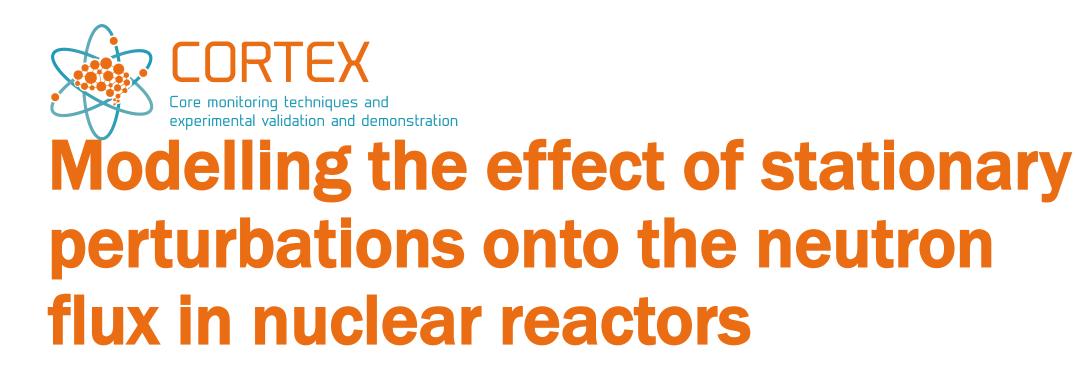


• Example of a travelling perturbation @ IHz

• Example of comparisons between frequency- and time-domain approaches:


- Modelling the effect of noise sources can be done in many ways:
 - Time-domain/frequency-domain
 - Diffusion/transport
 - Deterministic/probabilistic
 - Fine/coarse spatial mesh
- Taking full advantage of noise analysis requires:
 - A correct modelling of the noise source
 - The estimation of the reactor transfer function
 - Its inversion

- Extensive verification/validation work (still on-going):
 - By cross-comparisons of the tools in numerical benchmarks
 - Using noise experiments carried out at the AKR-2 and CROCUS reactors


- Extensive verification/validation work (still on-going):
 - By cross-comparisons of the tools in numerical benchmarks
 - Using noise experiments carried out at the AKR-2 and CROCUS reactors

COLIBRI experiments in CROCUS (© EPFL, Switzerland)

Oscillating fuel rods

SNETP Forum 2021

February 2-4, 2021, online

Prof. Christophe Demazière, Chalmers University of Technology

demaz@chalmers.se

