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Cortex

• Research conducted in the framework of the CORTEX Project
• Core monitoring techniques & experimental validation and demonstration for 

improved reactor safety
• European Horizon 2020 Programme
• Launched in Brussels on 5-6 September 2017,  will last for 48 months
• Total budget: €5.500.000
• Coordinated by Chalmers University
• Gathers 20 partners from 11 countries from across Europe

• Artificial Intelligence & Learning Systems (AILS) Laboratory, School of Electrical & 
Computer Engineering, National Technical University of Athens, Greece
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AILS@ECE.NTUA

• One of the main research units of the ECE NTUA
• directed by Professor Andreas-Georgios Stafylopatis

• Areas of Expertise
• Machine learning, artificial intelligence, neural networks, multimedia content analysis, 

human interaction, fuzzy logics, ontological knowledge representation and reasoning, 
…

• 39 Members
• 6 faculty, 7 senior researchers, 2 postdoc researchers, 18 researchers and Ph.D

students, 6 supporting and technical staff
• Publications

• Over 200 in journals and over 400 in international conferences
• Myself 

• Teaching & Research Associate (Lab Profile)
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Main Objective

• Detect anomalies in nuclear reactors using non‐intrusivemethodologies
• Anomalies

• Excessive vibrations of core internals
• Flow blockage
• Coolant inlet perturbations
• Combination of the above
• …

• Non‐intrusiveness
• Measure the inherent fluctuations in neutron flux recorded by in‐core and ex‐core 
detectors

• No external perturbation of the system is required
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Location of neutron detectors

Ex-core neutron detectors

Fixed in-core neutron detectors

Movable in-core neutron detectors
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Induced neutron noise

• Identify the driving perturbation(s) measured at the detectors
• Amplitude and Phase

• Extract the characteristic features
• Frequency of the perturbation
• "Relationships" between the induced neutron noise at different locations
• Spatial variation of the amplitude of the noise
• Spatial variation of the phase
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Overview of the procedure
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Signal types

• Real
• measured at the detectors
• characteristics
• may be due to more than one perturbation which are usually unknown
• noise, trend and intermittencies
• (possible) detector failure

• Simulated
• model the fluctuations in neutron flux resulting from known perturbations applied 
to the system through the estimation of the reactor transfer function

• characteristics
• can model a single, known perturbation
• can model noise, trend and intermittencies
• no detector failures (unless modelled!)

ML techniques for anomaly detection & the alignment of simulated perturbations with PP measurements, 13 January 20218



Workflow

1. Data preprocessing
• Remove noise, trend and intermittencies
• Account for possible detector failure

2. Feature Extraction
• Transformation Methods

• Discrete Fourier Transform (DFT)
• Discrete Wavelet Transform (DWT)

• Non-parametric inversion methods
• Artificial Neural Networks (ANNs)
• ...

3. Feature Selection
4. Machine Learning Techniques
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Example 
perturbation
Single fuel assembly vibrates 

in one direction
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Example perturbation
measured neutron flux at the in-core and ex-core detectors at the bottom 

level



Trend detection & removal



Trend

• Any systematic change in a time 
series (signal) that does not appear 
to be periodic
• Types of trend

• Deterministic
• increase or decrease consistently

• Stochastic
• Increase or decrease inconsistently

• Scope
• Global

• apply to the whole signal
• easier to identify

• Local
• apply to parts of the signal
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Removing trend

• Signals containing trend are characterized as non‐stationary
• Detrending

• The process of removing trend from a signal
• Simplifies signal analysis
• Trend has to be modeled in order to be removed

• Trend modelling
• Deterministic (linear) trend is easier to be modelled

• e.g. through least‐square regression
• Stochastic trend require more thorough analysis

• e.g. moving average trend lines can be detrended with the Baxter‐King filter
• e.g. cyclical components can be removed with the Hodrick‐Prescott filter
• …
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Detrending
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Before

After



Feature Extraction
Using transformation methods



The DiscreteWavelet Transform

• Suitable for analyzing signals with time‐varying spectra
• DFT gives the spectral details of the signal without considering temporal properties

• Produces varying time and frequency resolutions
• DFT produces frequency spectrograms
• DWT scalograms depict transients

• High frequencies
• Good time resolution, poor frequency resolution

• Low frequencies
• Poor time resolution, good frequency resolution

• Need to decide on the mother wavelet function used
• Different wavelets produce different coefficients/scalograms
• DFT uses only sinusoidal functions
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Choice of the mother wavelet

• Mother wavelet families
• Haar, Daubechy , Symlet , Coiflet , Biorthogonal , Reverse Biorthogonal , Discrete 
Mayer, …

• Criterion
• How "close" is the reconstructed signal to the original?

• Measures of similarity
• Cross‐correlation (statistical)

• 𝛾 𝑋,𝑌 ∑

• Energy to entropy (information‐theoretical)

• 𝜁 𝑛
∑

∑
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Cross‐correlation vs Energy‐to‐Entropy

Best wavelet: Biorthogonal (3.1) Best wavelet: Biorthogonal (5.5)
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Scalograms

• Detector signals 
represented as 
scalograms
• the “spectrogram” of DWT

• x-axis: time
• y-axis: frequency
• color: intensity
• Treated as images by the 

Deep Learning (DL) 
techniques discussed next



Anomaly Detection



System Architecture

• Two DL Convolutional 
Neural Networks (CNNs)

1. Perturbation 
Identification Network
• Output a binary vector of 

the detected perturbation(s)
2. Localization Network

• For certain type of 
perturbations locate them in 
the reactor core
• eg single fuel assembly 

perturbation



Identification & Localization Networks: 
ResNet



Experimental Implementation

• Swiss pre-KONVOI pressurized water reactor (PWR)
• 3-loop reactor, 177 FAs

• Simulated data only
• Provided by the Paul Sherrer Institute (PSI)

• CASMO-5/SIMULATE-3 code system, coupled with SIMULATE-3K transient nodal code
• Four perturbation types

• Individual FA vibrations, inlet coolant, inlet flow & their combinations
• Three modes of vibration (for the FA case)

• Cantilevered, C-shaped, S-shaped
• Three core conditions

• Beginning, middle & end of cycle
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Procedure

• Preprocessing
• Detrend signals, compute DWT, construct scalograms
• Covert scalograms to 1-channel grayscale images
• Construct a 44-channel image from all detectors

• Results of the identification network on the test data
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Perturbation Precision Recall F1-score

FA 0.97 0.96 0.96

Inlet temperature 0.95 0.93 0.94

Inlet coolant 0.94 0.91 0.92

Combinations 0.92 1 0.96



Results of the localization network

• Accuracy on test data
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Prediction proximity Proportion

Exact 0.73

1 difference 0.21

2 difference 0.05

more than 2 difference 0.01



Robustness analysis
• Adapt to cases of faulty detectors signals

• Consider only a subset of incore/excore detectors function normally
• 6 different combinations

• Accuracy on the test data

• More details on our ANS M&C 2021 submission
• Thanos Tasakos, George Ioannou, Vasudha Verma, Georgios Alexandridis, Abdelhamid Dokhane and 

Andreas Stafylopatis - Deep learning-based anomaly detection in nuclear reactors
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Prediction 
Proximity

Comb 1 Comb 2 Comb 3 Comb 4 Comb 5 Comb 6

exact 0.52 0.58 0.48 0.65 0.43 0.66

1 diff. 0.31 0.32 0.32 0.26 0.34 022

2 diff. 0.11 0.07 0.13 0.07 0.15 0.09

2 diff. 0.06 0.03 0.07 0.02 0.08 0.03



Align simulated 
perturbations with plant 
measurements



Intuition

• Power plant measurements are usually unlabeled data 
• It is not known whether (& which) perturbations occur within the core

• Use modelling tools to simulate the induced noise produced by 
various “known” perturbations
• Compare the simulated signals with the plant measurements in order 

to locate similarities & dissimilarities
• These comparisons may form the basis for more advanced machine-

learning based techniques
• eg clustering



Procedure

• Preprocessing
• Detrend plant measurements & simulated signals 
• Compute the DFT of the above
• Compute the Auto Power Spectral Density (APSD) of the plant measurements

• Identify frequency peaks of APSDs
• Welch algorithm
• Candidate frequencies for the existence possible perturbations

• Compute the Cross Power Spectral Density (CPSD) between 
• all detectors of the plant measurements,  creating an matrix
• the corresponding simulated data for the frequency peaks identified above (again 

creating matrices)

• Compare the CPSDs between real measurements & simulated data 
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System architecture
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Example APSDs
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Experimental Implementation

• German pre-KONVOI PWR
• 4-loop reactor

• Actual plant measurements
• Simulated data

• Provided by Chalmers University
• CORE SIM+ tool

• Four perturbation types
• Individual FA vibrations  

• Modes: cantilevered, simply supported, cantilevered & simply supported
• Coolant flow vibrations
• Core barrel vibrations

• Modes: beam, pendular
• Generic (absorber of variable strength)
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Example results

• Similarity Heatmap for axially  
traveling perturbation at the 
velocity of the collant flow at 0.3 
Hz.
• More details on our ANS M&C 

2021 submission
• George Ioannou, Thanos Tasakos, 

Antonios Mylonakis, Georgios 
Alexandridis, Christophe Demaziere, 
Paolo Vinai and Andreas Stafylopatis –
Feature extraction and identification 
techniques for the alignment of 
perturbation simulations with power 
plant measurements
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Thank you


