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Camı́ de Vera s/n, 46022, València, Spain
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Abstract

The mechanical vibrations of core internals as fuel assemblies cause oscillations in the neutron flux

that require, in some circumstances, to operate nuclear power plants at a reduced power level.

This work simulates and analyses the changes of the neutron flux throughout a nuclear core due

to the oscillation of a single fuel assembly without considering thermal-hydraulic feedback. The

amplitude of the fuel assembly vibration is bounded to a few millimeters and this implies the use

of fine meshes and accurate numerical solvers due to the different scales of the problem. The

results of the simulations show a main oscillation of the neutron flux with the same frequency as

the fuel assembly vibration along with other harmonics at multiples of the vibration frequency

much smaller in amplitude. Also, this work compares time-domain analysis and frequency-domain

analysis of the mechanical vibrations. Numerical results show a close match between these two

approaches for the fundamental frequency.

Keywords — Neutron Noise, Fuel Assembly Vibrations, Neutron Diffusion Approximation, Time-

domain modeling, Frequency-domain modeling
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I. INTRODUCTION

In the area of core monitoring, detection of reactor perturbations gives the possibility to

take proper actions before such problems lead to safety concerns or impact plant availability.

The CORTEX project [1], aims at developing an innovative core monitoring technique that allows

detecting anomalies in nuclear reactors, such as excessive vibrations of core internals, flow blockage,

coolant inlet perturbations... The technique is based on using the fluctuations of the neutron flux

around its steady state value, known as neutron noise, recorded by in-core and ex-core detectors.

The main benefit of this method is that it can be applied on-line without disrupting plant operation.

Furthermore, the method is non-intrusive, i.e. no additional perturbation needs to be introduced.

A correlation between the stiffness of fuel assemblies (FA) and neutron noise levels was

experimentally demonstrated [2], indicating the direct effect of FA vibrations onto the neutron

noise. This paper asses the capability of time-domain and frequency-domain simulations to study

the spatial dependence of the neutron noise caused by FA vibrations. Also, it evaluates the

magnitude and spatial shape of the neutron noise when a single FA is vibrating. Reactor core

instrumentation is capable of detecting a small periodic variation at a specific frequency and it

can be differentiated from the random noise in the detectors signals (white noise) [3, 4]. The

detection of neutron noise nevertheless requires a specific signal processing, both using hardware

and software: removal of the mean value, amplification, anti-aliasing filters, and analog-to-digital

conversion. The analysis of neutron noise is then most easily and most efficiently performed in

the frequency-domain, where peaks in the spectra can be identified and subsequently analyzed.

FA vibrations has received some particular interest in the CORTEX project, with the COLIBRI

experiments in the CROCUS reactor [5]. These experiments mimic fuel assembly vibrations by

displacing fuel rods in an oscillatory manner. These experiments also demonstrate that such

vibrations induce a neutron noise measurable by the core instrumentation.

The present contribution simulates the movement of a FA as a sinusoidal displacement of

the boundary between adjacent homogenized regions. Other studies considered FA vibrations as

random modification of the size of the water gaps which surrounds the FA of interest [6]. Time-

domain and frequency-domain comparisons of different perturbations have been reported lately in

[7, 8, 9].

FA vibrations have been studied from a mechanical point of view in [10] and [3]. Natural
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frequencies range from 0.8 Hz to 24.5 Hz depending on the idealized form of bearing and their

building materials. The amplitude of the vibrations ranges can reach up to 1 mm. However, there

can be amplitudes greater than 1 mm in case of synchronous motions. This work is based on a

single FA vibration of 1 Hz and 1 mm of amplitude as a typical example.

This paper is an extension of [11] and is organized as follows. First, the time-domain analysis

is explained in Section II. Section III describes the frequency-domain analysis and the usual approx-

imation to model a mechanical FA vibration. Then, numerical results for a two-dimensional model

are given in Section IV to compare the proposed methodologies. Finally, Section V summarizes

the main conclusions of the work.

II. TIME-DOMAIN ANALYSIS

The neutron transport equation for nuclear reactor applications is usually approximated

by the neutron diffusion equation. For a given transient, the balance of neutrons inside a nuclear

reactor core can be modeled using the time-dependent neutron diffusion equation in the two energy

groups approximation without up-scattering, which is of the form

[v−1]
∂Φ

∂t
+ LΦ = (1− βeff)MΦ +

K∑
k=1

λkχCk, (1)

∂Ck
∂t

= βk[νΣf1 νΣf2]Φ− λkCk, k = 1, . . . ,K, (2)

where K is the number of delayed neutron precursors groups considered and the following matrices

have been defined

L =

 −~∇ · (D1
~∇) + Σa1 + Σ12 0

−Σ12 −~∇ · (D2
~∇) + Σa2

 , [v−1] =

 1
v1

0

0 1
v2

 ,

M =

 νΣf1 νΣf2

0 0

 , Φ =

 φ1

φ2

 , χ =

 1

0

 ,

where φ1 and φ2 are the fast and the thermal neutron fluxes, respectively. Other quantities have

their usual notation, see for example [12]. Although a transport-based solution without spatial

homogenization would be required to properly catch the effect of local noise sources, some studies

4



revealed that a diffusion-based solution correctly represents a transport-based solution a few mean

free paths from the noise source and from strong heterogeneities [13, 14].

In this work, a high order finite element method (FEM) has been used for the spatial dis-

cretization of the neutron diffusion equation, as the one presented in [15] and [16].

Once the spatial discretization has been selected, a discrete version of the time-dependent

neutron diffusion equation is solved. Since the system of ordinary differential equations resulting

from the discretization of the neutron diffusion equations is, in general, stiff, implicit methods

are necessary. Particularly, a first order backward method is used [17]. This method leads to a

large system of linear equations that needs to be solved for each time step. The semi-discrete two

energy groups time-dependent neutron diffusion equation together with the neutron precursors

concentration equations are of the form

[ṽ−1]
dΦ

dt
+ LΦ = (1− βeff)MΦ +

K∑
k=1

λkXCk , (3)

P
dCk
dt

= βk (M11M12) Φ− λkPCk , k = 1, . . . ,K , (4)

where L and M are the matrices obtained from the spatial discretization of operators L andM. Φ

and Ck are the vector of coefficients of the neutron flux and the precursors concentration in terms

of the polynomials used in the FEM. M11, M12 are the non-zero block matrices of the matrix M .

The matrices X and [ṽ−1] are defined as

X =

 P

0

 , [ṽ−1] =

 P v−1
1 0

0 P v−1
2

 ,

where the matrix P is the mass matrix of the spatial discretization, that appears because the

polynomial basis used in the spatial discretization is not orthonormal.

The neutron precursors equation (4) can be discretized in time using an explicit scheme as

PCn+1
k = PCnk e

−λk∆t +
βk
λk

(
1− e−λk∆t

) (
Mn+1

11 Mn+1
12

)
Φn+1 . (5)

In the same way, Euler’s backward method is used in equation (3), using equation (5), yielding
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to a set of linear equations,

Tn+1Φn+1 = RnΦn +

K∑
k=1

λke
−λk∆tXCnk , (6)

where the matrices are defined as,

Tn+1 =
1

∆t
[ṽ−1] + Ln+1 − âMn+1 ,

Rn =
1

∆t
[ṽ−1] =

1

∆t

 P v−1
1 0

0 P v−1
2

 ,

and the coefficient â is

â = 1− βeff +

K∑
k=1

βk
(
1− e−λk∆t

)
,

where βeff =
∑K
k=1 βk. This system of equations has to be solved for each time step. The precondi-

tioned BICGSTAB method [18] has been chosen to solve these systems and the preconditioner used

has been the incomplete LU preconditioner together with a reordering of the matrix to decrease

the fill-in. This system of equations is large and sparse and has to be solved for each new time

step with a high accuracy, tol = 10−12.

The finite element method used in this work has been implemented using the open source

finite elements library deal.II [19]. To solve the resulting algebraic eigenvalue and linear problems

the libraries PETSc [20] and SLEPc [21] are used. The code developed is called FEMFFUSION.

Finally, to compare the results obtained from the time-domain analysis with the ones obtained

with the frequency-domain methodology we define the neutron noise as

δφ(r, t) = φ(r, t)− φ(r, 0). (7)

Then, we can apply a Fourier transform to the neutron noise in the time-domain,

δφ(r, ω) = F [δφ(r, t)] =

∞∫
−∞

exp(−iωt)δφ(r, ω)dt. (8)

This transform is calculated with the Fast Fourier Transform algorithm (FFT) over the time-

dependent results using a sampling time of 10−2 s and scaled accordingly to be able to compare
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the discrete Fourier transform results with the continuous Fourier transform given by equation (8).

III. FREQUENCY-DOMAIN ANALYSIS

The neutron diffusion equation in the frequency-domain has been already successfully used

to study other neutron noise sources [22, 23, 24]. One usual tool to solve the two-group diffusion

equation in the frequency-domain in the first-order neutron noise approximation is the CORE SIM

code [25]. This tool has been already validated against many (semi-)analytical solutions [26] and

other solutions.

The first-order neutron noise theory is based on separating every time-dependent term, ex-

pressed as U(r, t), into their mean value, U0, and their fluctuation around their mean value, δU0

as

U(r, t) = U0(r) + δU(r, t). (9)

The fluctuations are assumed to be small compared to the mean values. This allows to neglect

second-order term (δU(r, t)× δU(r, t)) ≈ 0. Also, the fluctuations of the diffusion coefficients are

neglected and δDg = 0 is assumed. Then, a Fourier transform is applied to the neutron diffusion

equation. Thus, the first-order neutron noise equation can be written as [27],

(
~∇D~∇+ Σdyn

)δφ1

δφ2

 = δΣrφr + φa

δΣa1

δΣa2

+ φf

δΣf1

δΣf2

 , (10)

where

D =

D1 0

0 D2

 , Σdyn =

−Σ1 νΣf2

(
1− iωβeff

iω+λeff

)
Σ12

(
Σa2 + iω

v2

)
 , φr =

 φ1

−φ1

 ,

φa =

φ1 0

0 φ2

 , φf =

−φ1

(
1− iωβeff

iω+λeff

)
−φ2

(
1− iωβeff

iω+λeff

)
0 0

 ,

Σ1 = Σa +
iω

v1
+ Σr − νΣf1

(
1− iωβeff

iω + λeff

)
, λeff =

1∑K
k=1

1
λk

.

The neutron noise equation is a partial differential equation with complex coefficients that has to

be solved after the static solution is obtained, as φ1 and φ2 represent the steady state fast and
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thermal neutron fluxes. The related static eigenvalue problem must be solved with the same spatial

discretization as the frequency-domain neutron noise equation to get coherent results. CORE SIM

uses a box finite difference scheme to solve the steady-sate and the frequency-domain neutron noise

problems.

It must be noted that the frequency-domain approach must solve a linear system in the com-

plex domain but this system is only solved once. On the other hand the time-domain approach

must solve a linear system at each time step, resulting in a large amount of linear systems res-

olutions for a typical transient. Small time steps are usually used to solve the neutron diffusion

equation when the [v−1] ∂Φ/∂t term of equation (1) must be accurately represented. However,

this term is important only when the neutron flux changes at least one decade over a ms. This is

not the case of neutron noise analysis calculations. In this way, a time step of ∆t = 10−2 s has

been proven to give accurate results, although this work has used a time step of ∆t = 10−4 s.

III.A. A vibrating FA in the frequency-domain

There are different models to describe the vibration of a FA in the frequency domain. In

this work, we used the ε/D model, in which the vibration is converted into a spatially localized

cross-section perturbation [27].

Assuming a nodal representation of the system (i.e. each fuel assembly is replaced by homog-

enized regions), one oscillating FA can be modeled as two moving interfaces between homogeneous

materials. For the sake of illustration, we consider hereafter two adjacent homogeneous regions

and the corresponding possible displacement of the boundary between those regions, as shown

in Figure 1. The cross section, Σα, at the interface x = b between two material regions can be

described as

Σα(x) = (1−H(x− b)) ΣIα +H(x− b)ΣIIα , (11)

whereH is the unit step function, ΣIα and ΣIIα are the cross sections at region I and II, respectively.

A moving interface as b(t) = b0 +A sin(ωpt), results in:

Σα(x, t) = (1−H(x− b0 −A sin(ωpt))) ΣIα +H(x− b0 −A sin(ωpt))Σ
II
α . (12)

Using the first order Taylor expansion around x−b0, the cross section perturbation can be expressed
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Fig. 1. Vibrating interface between two regions.

as

δΣα(x, t) =
(
ΣIα − ΣIIα

)
A sin(ωpt)δ(x− b0), (13)

and, in the frequency-domain, the perturbation can be written as follows

δΣα(x, ω) = −iπA
(
ΣIα − ΣIIα

)
δ(x− b0) (δ(ω − ωp)− δ(ω + ωp)) . (14)

Since in numerical tools like CORE SIM the perturbation is introduced node-wise, one could

assume that the perturbed region is x ∈ [b0 −A, b0 +A] at angular frequency ωp with an average

value of δΣα = − 1
2 iπ

(
ΣIα − ΣIIα

)
at the perturbed region. If the spatial mesh used does not

match the perturbed region, the perturbation must be scaled accordingly. In [28] we can find the

full analytical expression for the model of a vibrating FA in the frequency domain. This model

highlights the fact that a monochromatic displacement introduces polychromatic perturbations of

the homogenized cross-sections on which the boundary is moving. This is due to the fact that

those homogenized regions are perturbed only during parts of the vibration period.

To test the accuracy of the first order approximation, a numerical fast Fourier transform of

a time-dependent cross sections, Σα(x, t), is calculated. The numerical FFT was obtained for a

one dimensional moving interface perturbation of ΣIα − ΣIIα = 1 and 1 Hz. Figure 2 shows the

spectrum of the perturbation at different spatial points using the FFT. The amplitude of the cross

section perturbation is maximum at 1 Hz and the amplitudes at other frequencies are smaller.

Figure 3 shows the absolute value of the amplitude of the perturbation, |δΣα|, at 1 Hz,

2 Hz, 3 Hz and 4 Hz for the numerical FFT and the first order approximation, in other words

the amplitude of the perturbation at ωp, 2ωp, 3ωp and 4ωp. Figure 3(a) at 1 Hz, shows that

the main frequency of the cross section perturbation produced by a moving FA is the frequency
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of the oscillation. In this way, the first order approximation only uses the perturbation at this

frequency to model the FA vibration. It must be noted that the first order approximation has the

same perturbation integral as the FFT and it can be introduced using only one node. The higher

harmonics corresponding to frequencies of 2 Hz, 3 Hz and 4 Hz usually are not taken into account

in a frequency-domain code [25]. Here we study the contributions of those higher harmonics solving

the time-dependent problem with FEMFFUSION. In this way, the time-domain approach does not

decompose the perturbation and so does not imply any assumptions in the perturbation source.

In [29] and [28] more results corresponding to the higher harmonics of the noise source are given.

Moreover, different models of the noise induced from a mechanical vibration of a fuel assembly can

be found.
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Fig. 2. Spectrum of the numerical FFT at different spatial points.
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Fig. 3. Cross Section perturbation amplitudes at different frequencies.

IV. NUMERICAL RESULTS

The BIBLIS 2D benchmark is selected to compare the frequency and time-domain analysis

for a vibrating FA. This is a classical two-group neutron diffusion problem taken as a benchmark

for different numerical codes. The material and geometry definition of the benchmark can be found

in [30]. The problem is made critical before starting the time-dependent calculation by dividing

νΣfg over keff.

The assembly in the position (6, 6) is selected to be oscillating along the x direction as

xi(t) = xi0 +A sin(ωpt), (15)

where xi(t) represents each position of the vibrating assembly along time, originally placed at xi0.

The selected amplitude of the movement is 1 mm and the frequency of the vibration is 1 Hz, i.e.
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ωp = 2π. The perturbation for the time-domain calculation is inserted changing the cross sections

at each time step, modeling the movement of the FA by volume-averaged cross sections. For the

frequency-domain calculation, the perturbation is inserted following the first order approximation

as explained in Section III.A. In this way, the perturbation is inserted cell wise in the adjacent cells

next to the moving FA as shown in Figure 4. The value of the cross sections and the perturbed

cross sections are given in Table I following the formula, δΣα = −iπ
2

(
ΣIα − ΣIIα

)
. Two perturbed

regions are then defined: one on the left and one on the right of the moving boundary of the

vibrating FA. These regions have the same cross section perturbation amplitude but a phase lag of

180◦. Due to the different scales of the problem, a fine mesh needs to be used to accurately solve

the system. In the time-domain analysis, a refined spatial mesh in the surroundings of the moving

FA with 869 cells and cubic polynomials in the FEM are used. In the frequency-domain analysis,

a uniform mesh of 4624 cells is employed. If these fine meshes are not used, the effect of the FA

vibration could be overestimated [9].
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Fig. 4. Materials and perturbed regions of the 2D BIBLIS reactor.

Figure 5 shows the spatial distribution of the amplitude of the relative neutron noise in the

frequency-domain calculated with the time-dependent code FEMFFUSION at 1 Hz. In this figure,

the relative neutron noise is represented in percentage of the steady-state neutron flux. It can

be seen that the induced fast neutron noise has an influence on larger scales through the reactor

compared to the thermal noise, due to the larger mean free path of fast neutrons. On the other

hand, the thermal noise is localized in the surroundings of the oscillating FA. Two clear peaks

can be observed in these Figures at the position of the moving interfaces where the cross sections

12



TABLE I
Static and perturbation cross sections of the BIBLIS 2D reactor.

Material g Dg Σag νΣfg Σ12

(cm) (1/cm) (1/cm) (1/cm)

1 1 1.4360 0.0095042 0.0058708 0.017754
2 0.3635 0.0750580 0.0960670

2 1 1.4366 0.0096785 0.0061908 0.017621
2 0.3636 0.0784360 0.1035800

3 1 1.3200 0.0026562 0.0000000 0.023106
2 0.2772 0.0715960 0.0000000

4 1 1.4389 0.0103630 0.0074527 0.017101
2 0.3638 0.0914080 0.1323600

5 1 1.4381 0.0100030 0.0061908 0.017290
2 0.3665 0.0848280 0.1035800

6 1 1.4385 0.0101320 0.0064285 0.017192
2 0.3665 0.0873140 0.1091100

7 1 1.4389 0.0101650 0.0061908 0.017125
2 0.3679 0.0880240 0.1035800

8 1 1.4393 0.0102940 0.0064285 0.017027
2 0.3680 0.0905100 0.1091100

Material g δDg δΣag νδΣfg δΣ12

Perturbed 1 0.0000000 -0.0009668i -0.0003642i +0.0009330i
Region I 2 0.0000000 -0.0190000i -0.0085000i

Perturbed 1 0.0000000 +0.0009668i +0.0003642i -0.0009330i
Region II 2 0.0000000 +0.0190000i +0.0085000i

Non Perturbed 1 0.0000000 0.0000000 0.0000000 0.000000
Region 2 0.0000000 0.0000000 0.0000000

change along the FA movement.

When, any kind of a perturbation in a critical system without thermal-hydraulic feedback

is introduced —even a sinusoidal perturbation— the system becomes unstable, since keff deviates

from unity. Nevertheless, this change in criticality will be attenuated by the thermal-hydraulic

feedback that has a stabilizing effect. As Figure 6 shows that maximum static reactivity is only

ρ = (keff − 1)/keff ' 1.5 × 10−8. Even if it is possible to introduce some kind of average kinetic

eigenvalue to mitigate this effect [31]. This correction was not implemented in this work because

of the smallness of the perturbation in reactivity. If the simulation was longer or the perturbation

was greater, this kind of treatment would be necessary.

Figure 7 shows a comparison of the relative amplitude of neutron flux noise for the fast and

thermal groups along y = 150.2969 cm obtained with the FEMFFUSION code and the CORE SIM code,

in other words, between the time-domain and the frequency-domain approaches. Figure 8 gives a
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Fig. 5. Noise amplitudes for the 2D BIBLIS reactor at 1 Hz.
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comparison of the phase of the neutron noise obtained with the two codes. A close agreement is

observed for both the amplitude and the phase of the neutron noise for the vibration frequency

at 1 Hz, especially far from the FA vibration. We can observe that the vibrating FA produces a

phase change from 90◦ to −90◦ in the induced noise.

Figure 9 shows the relative error in the noise amplitude different along the line y = 150.2969

cm when different time steps are used. This Figure demonstrates that a time step of 10−2 s is

enough to accurately reproduce the noise amplitude results.

The relative difference between these approaches is quantified in Figure 10. The relative

differences are small in regions far away from the perturbation, although the relative differences at

the perturbation location are comparably bigger. This difference is mainly caused by the spatial
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discretization error in the time-domain and the frequency-domain methodologies. The frequency-

domain approach is based on a finite difference approach, whereas the time-domain approach is

based on a finite element approach. The latter approach is known to better capture steep gradients,

as is the case close to the noise source.

Figure 11 displays the amplitude for the second harmonic of the neutron, at 2 Hz, calculated

with the time-dependent code. It can be observed that this noise is sharper than the noise associ-

ated with the fundamental frequency and its amplitude much smaller than the 1 Hz component.

In this Figure, it can be seen that there are two drops of noise amplitude in the middle of the

moving interfaces as the ones shown in the frequency analysis of the cross section perturbation

in Figure 3(b). Figure 12 shows the amplitude of the neutron noise for the third harmonic at 3

Hz. These higher harmonics have less influence on the total neutron noise because their amplitude

are much smaller than the fundamental harmonic of the noise at the FA vibration frequency. The

contributions of the multiples frequencies come from the fact that the perturbation source has

different frequencies. In the time-domain simulations moreover, the multiple frequencies are also

due to the explicit modeling of the non-linearities. However, the harmonics following the first one

are much smaller, and cancel out in adjacent regions. This causes that these harmonics have a

very small noise amplitude. Thus, the neutron noise at the FA frequency is the main component

of the neutron noise and must be the one used to detect anomalies in the operation of a nuclear

reactor.

It should also be pointed out that the analysis of plant data is typically performed using

frequency spectra of neutron detectors, i.e. the effect of vibrations is thus resolved at different

frequencies. If only the fundamental frequency is considered, the present work demonstrates that

estimating the effect of a FA vibration can be equally well carried out using modeling in the time

domain or in the frequency-domain (using a first order approximation).

V. CONCLUSIONS

This research presented the modeling of the effect of the mechanical vibration of fuel assem-

blies onto neutron noise. The problem combines different spatial scales, e.g. a 1 mm oscillation of

a fuel assembly that measures about 20 cm in radial size in a reactor of some meters length. This

implies that we need to work with a very high precision in the spatial discretization and in the
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tolerances given to the solvers.

Numerical results show that the main oscillation in the neutron flux is obtained at the same

frequency as the one of the assembly vibration. Neutron noise at multiples of the mechanical

vibration are also seen in time-dependent calculation but with much less amplitude. This paper

compares the time-domain analysis and the frequency-domain analysis of the phenomena. Numer-

ical results show a close match between these two approaches at the FA vibration frequency.

Higher harmonics are less important to total neutron noise because their amplitude is much

smaller than the fundamental harmonic. Furthermore, the neutron noise corresponding to those

higher harmonics has a much larger spatial decay away from the perturbation. It thus means that

unfolding the location of the vibrating FA from distant neutron detectors is far more challenging

than using the neutron noise at the fundamental frequency.
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Fig. 7. Relative noise amplitude comparison for 2D BIBLIS reactor in y = 150.2969 cm at 1 Hz.
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Fig. 8. Phase comparison for 2D BIBLIS reactor in y = 150.2969 cm at 1 Hz.
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Fig. 9. Relative error in noise amplitude at different time steps for 2D BIBLIS reactor in
y = 150.2969 cm at 1 Hz.
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Fig. 10. Relative difference in noise amplitude between frequency-domain and time-domain
methodologies for 2D BIBLIS reactor in y = 150.2969 cm at 1 Hz.
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Fig. 11. Relative noise amplitudes in y = 150.2969 cm at 2 Hz.
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Fig. 12. Relative noise amplitudes in y = 150.2969 cm at 3 Hz.
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