"Listening" to neutron noise – or how to diagnose nuclear reactor systems using the inherent fluctuations in neutron density

Prof. Christophe Demazière
Chalmers University of Technology
Department of Physics
Division of Subatomic, High Energy and Plasma Physics
SE-412 96 Gothenburg, Sweden

demaz@chalmers.se

Follow me on Twitter, LinkedIn and Facebook!

Task Force on Deterministic REActor Modelling at Chalmers University of Technology
Introduction

• Fluctuations always existing in dynamical systems even at steady state-conditions:

\[X(r,t) = X_0(r,t) + \delta X(r,t) \]
Introduction

- Fluctuations always existing in dynamical systems even at steady state-conditions:

\[X(r,t) = X_0(r,t) + \delta X(r,t) \]

Conceptual illustration of the possible time-dependence of a measured signal from a dynamical system.
Introduction

- Fluctuations always existing in dynamical systems even at steady state-conditions:

\[X(r,t) = X_0(r,t) + \delta X(r,t) \]

Conceptual illustration of the possible time-dependence of a measured signal from a dynamical system
Introduction

• Fluctuations always existing in dynamical systems even at steady state-conditions:

\[X(r, t) = X_0(r, t) + \delta X(r, t) \]

Conceptual illustration of the possible time-dependence of a measured signal from a dynamical system

➢ Fluctuations carrying some valuable information about the system dynamics

fluctuations or “noise”
Introduction

• Fluctuations could be used for “diagnostics”, i.e.:

 — Early detection of anomalies

 — Estimation of dynamical system characteristics

 … even if the system is operating at steady-state conditions

➢ Example of nuclear reactors
Characteristics of nuclear reactors

• Nuclear reactors = large and complex systems
Characteristics of nuclear reactors

reactor core
Characteristics of nuclear reactors

reactor core

fuel assembly
Characteristics of nuclear reactors

reactor core fuel assembly fuel pin
Characteristics of nuclear reactors

- Reactor core
- Fuel assembly
- Fuel pin
- Fuel pellet
Characteristics of nuclear reactors

- Neutron detectors present both in-core and ex-core:
 - Ex-core neutron detectors
 - Fixed in-core neutron detectors
 - Movable in-core neutron detectors

- Advantage: “sense” perturbations even far away from the perturbations
- Disadvantage: western-type reactors do not always contain many in-core neutron detectors
Noise diagnostics in nuclear reactors

- Neutron noise diagnostics requires establishing relationships between neutron detectors and possible perturbations

- Could be done using the neutron transport equation (Boltzmann equation) or some simpler forms of it:

\[
\frac{1}{v(E)} \frac{\partial}{\partial t} \psi(r, \Omega, E, t) \\
= -\Omega \cdot \nabla \psi(r, \Omega, E, t) - \sum_i \psi(r, E, t) \psi(r, \Omega, E, t) \\
+ \int_0^\infty \int_0^{4\pi} \sum_s \left[(r, \Omega' \rightarrow \Omega, E' \rightarrow E, t) \psi(r, \Omega', E', t) \right] d\Omega' dE' \\
+ \frac{1}{4\pi} \int_0^t \int_0^\infty \nu(E') \sum_f \left[(r, E', t') \phi(r, E', t') \right] \left[(1 - \beta) \chi_p(E) \delta(t - t') + \sum_{i=1}^{N_d} \chi_i^d(E) \lambda_i \beta_i e^{-\lambda_i(t-t')} \right] dt' dE'
\]
Noise diagnostics in nuclear reactors

- Calculations to solve the system of equations for noise applications can be performed:
 - In the time- or frequency-domain
 - In linear or non-linear theory
 - Using diffusion or transport theory
 - Using deterministic or probabilistic (Monte Carlo) approaches
 - Using a coarse mesh or fine mesh representation of the phase space
Noise diagnostics in nuclear reactors

- Example of a travelling perturbation @ 1Hz
Noise diagnostics in nuclear reactors

- Calculations equivalent to estimating the reactor transfer function $G(r, r_p, \omega)$
Noise diagnostics in nuclear reactors

- But noise diagnostics requires the inversion of the reactor transfer function $G(r, r_p, \omega)$
Noise diagnostics in nuclear reactors

- But noise diagnostics requires the inversion of the reactor transfer function \(G(r, r_p, \omega) \)

- Machine learning could be used for that purpose
- Unfolding possible even if very few detectors available, due to the spatial correlations existing between a localized perturbation and its effect throughout the nuclear core
- EU-funded project CORTEX
Noise diagnostics in nuclear reactors

• **CORTEX**: CORe monitoring Techniques and Experimental validation and demonstration – EU funding.

 - Chalmers coordinating the project
 - 20 partners (18 from EU + 1 from Japan + 1 from USA)

 Follow the project on LinkedIn as well!

This project has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 754316.
Noise diagnostics in nuclear reactors

- CORTEX aims:
 - Developing high fidelity tools for simulating stationary fluctuations
 - Validating those tools against experiments to be performed at research reactors

This project has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 754316.
Noise diagnostics in nuclear reactors

• CORTEX aims:
 — Developing high fidelity tools for simulating stationary fluctuations
 — Validating those tools against experiments to be performed at research reactors

This project has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 754316.
Noise diagnostics in nuclear reactors

- CORTEX aims:
 - Developing high fidelity tools for simulating stationary fluctuations
 - Validating those tools against experiments to be performed at research reactors
 - Developing advanced signal processing and machine learning techniques (to be combined with the simulation tools)
 - Demonstrating the proposed methods for both on-line and off-line core diagnostics and monitoring

This project has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 754316.
Noise diagnostics in nuclear reactors

- Machine learning able to correctly identify and localize the type of perturbations existing in a nuclear core:
Noise diagnostics in nuclear reactors

- Machine learning able to correctly identify and localize the type of perturbations existing in a nuclear core:

Prediction

Ground truth

This project has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 754316.
Noise diagnostics in nuclear reactors

• Machine learning able to correctly identify and localize the type of perturbations existing in a nuclear core:

Prediction

Ground truth

© A. Durrant, G. Leontidis, S. Kollias (University of Lincoln/University of Aberdeen, UK)

This project has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 754316.
Conclusions and outlook

• Core diagnostics leading to improved reactor safety

• CORTEX project potentially having a large impact if successful

• Core diagnostics = mix between
 – Basic reactor physics and neutron transport
 – Computational reactor physics
 – Experimental reactor physics
 – Advanced signal analysis
 – Artificial intelligence

… with applications to large industrial installations
"Listening" to neutron noise – or how to diagnose nuclear reactor systems using the inherent fluctuations in neutron density

Prof. Christophe Demazière
Chalmers University of Technology
Department of Physics
Division of Subatomic, High Energy and Plasma Physics
SE-412 96 Gothenburg, Sweden

demaz@chalmers.se

Follow me on Twitter, LinkedIn and Facebook!

Task Force on Deterministic REActor Modelling
at Chalmers University of Technology