"Listening" to neutron noise – or how to diagnose nuclear reactor systems using the inherent fluctuations in neutron density

Prof. Christophe Demazière

Chalmers University of Technology
Department of Physics
Division of Subatomic, High Energy and Plasma Physics
SE-412 96 Gothenburg, Sweden

demaz@chalmers.se

Follow me on Twitter, LinkedIn and Facebook!

Task Force on Deterministic REActor Modelling at Chalmers University of Technology

Introduction

Fluctuations always existing in dynamical systems even at steady state-conditions:

Conceptual illustration of the possible timedependence of a measured signal from a dynamical system

$$X(\mathbf{r},t) = X_{0}(\mathbf{r},t) + \delta X(\mathbf{r},t)$$

Introduction

Fluctuations always existing in dynamical systems even at steady state-conditions:

Conceptual illustration of the possible timedependence of a measured signal from a dynamical system

$$X(\mathbf{r},t) = X_0(\mathbf{r},t) + \delta X(\mathbf{r},t)$$

actual signal

Introduction

Fluctuations always existing in dynamical systems even at steady state-conditions:

Conceptual illustration of the possible timedependence of a measured signal from a dynamical system

$$X\left(\mathbf{r},t\right) = \underbrace{X_{0}\left(\mathbf{r},t\right)} + \delta X\left(\mathbf{r},t\right)$$

signal trend or mean

Introduction

Fluctuations always existing in dynamical systems even at steady state-conditions:

Conceptual illustration of the possible timedependence of a measured signal from a dynamical system

$$X\left(\mathbf{r},t\right)=rac{\mathbf{X}_{0}\left(\mathbf{r},t
ight)+\left(\delta X\left(\mathbf{r},t
ight)
ight)}{\delta X\left(\mathbf{r},t
ight)}$$

fluctuations or "noise"

Fluctuations carrying some valuable information about the system dynamics

Introduction

- Fluctuations could be used for "diagnostics", i.e.:
 - Early detection of anomalies
 - Estimation of dynamical system characteristics
 - ... even if the system is operating at steady-state conditions
- Example of nuclear reactors

Characteristics of nuclear reactors

• Nuclear reactors = large and complex systems

Characteristics of nuclear reactors

reactor core

Characteristics of nuclear reactors

reactor core

Characteristics of nuclear reactors

Neutron detectors present both in-core and ex-core:

- Advantage: "sense" perturbations even far away from the perturbations
- Disadvantage: western-type reactors do not always contain many in-core neutron detectors

Noise diagnostics in nuclear reactors

- Neutron noise diagnostics requires establishing relationships between neutron detectors and possible perturbations
- Could be done using the neutron transport equation (Boltzmann equation) or some simpler forms of it:

$$\begin{split} &\frac{1}{v\left(E\right)}\frac{\partial}{\partial t}\psi\left(\mathbf{r},\mathbf{\Omega},E,t\right)\\ &=-\mathbf{\Omega}\cdot\boldsymbol{\nabla}\psi\left(\mathbf{r},\mathbf{\Omega},E,t\right)-\boldsymbol{\Sigma}_{t}\left(\mathbf{r},E,t\right)\psi\left(\mathbf{r},\mathbf{\Omega},E,t\right)\\ &+\int_{\left(4\pi\right)}\int_{0}^{\infty}\boldsymbol{\Sigma}_{s}\left(\mathbf{r},\mathbf{\Omega}'\rightarrow\mathbf{\Omega},E'\rightarrow E,t\right)\psi\left(\mathbf{r},\mathbf{\Omega}',E',t\right)d^{2}\mathbf{\Omega}'dE'\\ &+\frac{1}{4\pi}\int_{-\infty}^{t}\int_{0}^{\infty}\nu\left(E'\right)\boldsymbol{\Sigma}_{f}\left(\mathbf{r},E',t'\right)\phi\left(\mathbf{r},E',t'\right)\left[\left(1-\beta\right)\chi^{p}\left(E\right)\delta\left(t-t'\right)+\sum_{i=1}^{N_{d}}\chi_{i}^{d}\left(E\right)\lambda_{i}\beta_{i}e^{-\lambda_{i}\left(t-t'\right)}\right]dt'dE' \end{split}$$

Noise diagnostics in nuclear reactors

- Calculations to solve the system of equations for noise applications can be performed:
 - In the time- or frequency-domain
 - In linear or non-linear theory
 - Using diffusion or transport theory
 - Using deterministic or probabilistic (Monte Carlo) approaches
 - Using a coarse mesh or fine mesh representation of the phase space

Noise diagnostics in nuclear reactors

Example of a travelling perturbation @ 1Hz

© C. Demazière (Chalmers University of Technology)

Noise diagnostics in nuclear reactors

• Calculations equivalent to estimating the reactor transfer function $G(\mathbf{r}, \mathbf{r}_{\mathbf{p}}, \omega)$

Noise diagnostics in nuclear reactors

• But noise diagnostics requires the inversion of the reactor transfer function $G(\mathbf{r}, \mathbf{r}_{\mathbf{p}}, \omega)$

Noise diagnostics in nuclear reactors

lacktriangle But noise diagnostics requires the inversion of the reactor transfer function $G(\mathbf{r},\mathbf{r_p},\omega)$

- Machine learning could be used for that purpose
- Unfolding possible even if very few detectors available, due to the spatial correlations existing between a localized perturbation and its effect throughout the nuclear core
- > EU-funded project CORTEX

Noise diagnostics in nuclear reactors

 CORTEX: CORe monitoring Techniques and Experimental validation and demonstration – EU funding.

- Chalmers coordinating the project
- 20 partners (18 from EU + 1 from Japan + 1 from USA)

http://cortex-h2020.eu

Follow the project on LinkedIn as well!

Noise diagnostics in nuclear reactors

- CORTEX aims:
 - Developing high fidelity tools for simulating stationary fluctuations
 - Validating those tools against experiments to be performed at research reactors

AKR-2 reactor @TU Dresden, Germany

Noise diagnostics in nuclear reactors

CORTEX aims:

Oscillating fuel rods

- Developing high fidelity tools for simulating stationary fluctuations
- Validating those tools against experiments to be performed at research reactors

in CROCUS
(© EPFL, Switzerland)

Noise diagnostics in nuclear reactors

CORTEX aims:

- Developing high fidelity tools for simulating stationary fluctuations
- Validating those tools against experiments to be performed at research reactors
- Developing advanced signal processing and machine learning techniques (to be combined with the simulation tools)
- Demonstrating the proposed methods for both on-line and off-line core diagnostics and monitoring

Noise diagnostics in nuclear reactors

• Machine learning able to correctly identify and localize the type of perturbations existing in a nuclear core:

Prediction

Ground truth

Noise diagnostics in nuclear reactors

• Machine learning able to correctly identify and localize the type of perturbations existing in a nuclear core:

Noise diagnostics in nuclear reactors

• Machine learning able to correctly identify and localize the type of perturbations existing in a nuclear core:

© A. Durrant, G. Leontidis, S. Kollias (University of Lincoln/University of Aberdeen, UK)

Conclusions and outlook

- Core diagnostics leading to improved reactor safety
- CORTEX project potentially having a large impact if successful
- Core diagnostics = mix between
 - Basic reactor physics and neutron transport
 - Computational reactor physics
 - Experimental reactor physics
 - Advanced signal analysis
 - Artificial intelligence

... with applications to large industrial installations

"Listening" to neutron noise – or how to diagnose nuclear reactor systems using the inherent fluctuations in neutron density

Prof. Christophe Demazière

Chalmers University of Technology
Department of Physics
Division of Subatomic, High Energy and Plasma Physics
SE-412 96 Gothenburg, Sweden

demaz@chalmers.se

Follow me on Twitter, LinkedIn and Facebook!

Task Force on Deterministic REActor Modelling at Chalmers University of Technology