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ABSTRACT

The safe operation of nuclear power plants is highly dependent on the ability of quickly
and accurately identifying possible anomalies and perturbations in the reactor. Opera-
tional defects are primarily diagnosed by detectors that capture changes in the neutron
flux, placed at various points inside and outside of the core. Neutron flux signals are sub-
sequently analyzed with signal processing techniques in an effort to be better described
(have their higher-order characteristics uncovered, locate transient events, etc). To this
end, the application of intelligent techniques may be extremely beneficial, as it may assist
and extend the current level of analysis. Besides, the combination of signal processing
methodologies and machine learning techniques in the framework of nuclear power plant
data is an emerging topic that has yet to show its full potential. In this context, the current
contribution attempts at introducing intelligent approaches and more specifically, deep
learning techniques, in neutron flux signal analysis for the identification of perturbations
and other anomalies in the reactor core that may affect its operational capabilities. The
obtained results of an initial stage of analysis on neutron flux signals captured at pres-
surized water reactors are encouraging, underlying the robustness and the potential of the
proposed approach.
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1. INTRODUCTION

Anomaly detection is a well-established research field whose primary objective is to identify events
or samples deviating from what it could be considered “ordinary” or “normal” behavior within an
application domain. It has already found usage in such diverse areas as event detection in sen-
sor networks and factory systems, intrusion detection in networks, health monitoring and even in
ecosystem disturbances [1]. An increase in anomaly detection methodologies based upon intelli-
gent techniques has also been witnessed lately [2].

The main focus of this work is the application of anomaly detection methodologies on data origi-
nating from Nuclear Power Plants (NPPs). It is obvious that operational safety in NPPs, as well as
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performance improvement, is highly dependant upon condition monitoring and the timely detec-
tion of incipient faults. For example, a drift in steam generator feedwater flow sensors can cause
a 3% reduction in a reactor’s power output [3]. These faults are usually due to single or multi-
ple component defects and their detection can be quite difficult, since the proper handling of the
anomaly requires the timely identification and location of the aforementioned faults [4]. However,
changes in the reactor core usually take place at a slow pace and by the time an anomaly becomes
evident, it may be too late to face the underlying problem. For these reasons, it is necessary to
develop techniques that are able to automatically monitor the state and conditions within nuclear
reactors.

A nuclear reactor’s state may be assessed through the inspection of neutron noise levels, which
actually are the neutron flux fluctuations around a mean value [5]. Processes occurring within the
reactor core (mechanical and fuel assembly vibrations, thermohydraulic oscillations, etc) result in
changes of the neutron noise levels, which are captured by two types of sensors; in-core (located
inside the reactor’s core) and ex-core (located outside of the core).

More specifically, this work examines the KWU pre-Konvoi Pressurized Water Reactors (PWRs)
[6], designed by Siemens AG. The aforementioned reactors have demonstrated high values of
neutron noise since their inception [7]. Nevertheless, this activity has not been considered to be
alarming, as it has not resulted in problems related to the high flux fluctuations. However, for
safety reasons, it is important to frequently monitor these values.

In this direction, the introduction of intelligent techniques in reactor state monitoring is expected to
be both beneficial for the safety of the NPP and also important for the whole system’s performance
[8]. In Section 2 below, related work on anomaly detection in NPP data along with intelligent
techniques are outlined. The proposed methodology is discussed in Section 3 and the experimental
framework is described in Section 4, along with the obtained results. Finally, the paper concludes
in Section 5.

2. RELATED WORK

Most of the research on anomaly detection in NPP data is related to fault detection and diagnosis
(FDD) methodologies [9]. The aforementioned methods may either be model-based or model-free
and are further classified according to their adaptation to different NPP problems and intricacies.
In [10], a real-time data-driven application, based upon symbolic dynamic filtering (SDF), is intro-
duced and compared to principal component analysis (PCA) [11]. SDF is capable of extracting
meaningful features from time series (like NPP data) through the construction of a probabilistic
finite state automaton. The output of the system is a lower-dimensional vector that is subsequently
used to train a classifier. In the said work, it has been demonstrated that SDF-based classifiers
outperformed PCA-based ones in terms of the achieved test error rate.

In [12], outlier identification on neutron flow signals originating from a nuclear reactor channel
is achieved via support vector data description (SVDD) [13]. Additionally, deep learning (DL)
techniques [14] localizing the specific points in the reactor core where perturbations originate from,
have been employed in [15]. Specifically, time signals transformed to the frequency domain are
provided to a convolutional neural network (CNN) [14], with the overall architecture achieving
satisfactory results. In the same work, a denoising autoencoder along with a clustering technique
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are also employed for perturbation identification and localization. Finally, in [16], anomalies in
the reactor core are identified through the combined use of wavelet-based scaleograms and DL
methodologies.

3. PROPOSED METHODOLOGY

The objective of the proposed methodology is to be able to identify up to N co-occurring pertur-
bations through the application of multi-class classification [17]. In particular, an one-vs-all (also
known as one-vs-rest) architecture is used (Figure 1), with each binary classifier being indepen-
dently trained to recognize only one of the N perturbations (classes).

System output

Classifier 1
Perturbation 1-vs-all

Classifier 2
Perturbation 2-vs-all

. . . Classifier N
Perturbation N -vs-all

Pre-processing
(detrending, etc)

Signals

Figure 1: One-vs-All System Architecture

During inference, the preprocessed signal is provided as input to all N classifiers and their predic-
tions are merged to generate the final output, which is a an N -dimensional binary vector that can
have an arbitrary number of ones and zeros, depending on the number of perturbations present in
the signal.

Each classifier is itself an independent deep neural network (DNN) [14] that consists of convo-
lutional and recurrent components. In principle, CNNs are types of DNN that are comprised of
convolutional, pooling and fully connected (FC) layers and are commonly employed in image anal-
ysis. They use weight sharing and sparse connectivity to extract spatial information from images,
significantly reducing the number of parameters per layer, which allows for the creation of even
deeper networks. CNNs are considered to be the state-of-the-art for most image-related tasks and
have been applied to many domains. In this particular case, a special type of CNN has been used,
that includes 1-dimensional (1-D) convolutional filters instead of the commonly-used 2-D ones.
These were chosen in order to adhere to the single dimensional shape of the input signals.

A recurrent neural network (RNN) [14], on the other hand, is a DNN suitable for sequential data
(e.g. time series). It is designed to recognize patterns and make associations through time. This is
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achieved via the concurrent input of multiple sequence instances (present and past) to the network,
thereby forming a short of memory, that can be used to analyze temporal relationships. Network
training is attained via backpropagation through time [18], a variant of the standard neural network
training algorithm. To overcome certain issues occurring during training (namely vanishing and
exploding gradients) and to be able to handle long-term dependencies, a special type of component
has been chosen, the long short-term memory (LSTM) [19] unit. In this study, RNNs with LSTM
units have been employed to extract time-dependent information out of the input signals.

4. EXPERIMENTAL FRAMEWORK

4.1. Dataset Description

The proposed methodology has been trained and evaluated upon data generated by the SIMULATE-
3K tool [20,21], modelling some basic types of perturbations occurring in nuclear reactors. The
aforementioned tool is used to model time-dependent situations which, in the present case, are
induced by adding different perturbations, such as fuel assembly vibrations (of both single assem-
blies and of clusters), coolant flow and temperature oscillations, as compared to the steady-state
operation of the reactor. Specifically, the 3 main perturbation types of Table 1 have been con-
sidered in the experiments that follow, for a 4-loop Westinghouse PWR mixed core, utilized in
the OECD/NEA transient benchmark [22] (Boron concentration: 408 ppm, mass flow rate: 100%,
system pressure: 2250 psi, inlet coolant temperature: 286.7◦C).

Table 1: Perturbation types & scenarios considered in the experiments

Scenario Perturbation Description Frequency AmplitudeType

1

I

5× 5 Central Cluster of Fuel white noise 1mm

2 Assemblies synchronously 0.5mm

3 vibrating in the x-direction
1.5Hz

1mm

4 0.5mm

5 II Coolant Flow Oscillations Random ±1%
(Mean value: 100%)

6 III Coolant Temperature Oscillations Random ±1◦C
(Mean value: 286.7◦C)

Every simulated scenario included measurements from 48 in-core and 8 ex-core detectors. An
initial experimentation revealed that the contribution of the latter category of detectors in the pre-
diction task was marginal, due to the spatial attenuation of the induced neutron noise between the
core and outside of the core. As a result, the analysis that follows has been solely based on in-core
detector signals.
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More specifically, the in-core sensors were located at 8 different axial locations, each taking mea-
surements at 6 different heights [23]. Each signal had a duration of 100secs and a sampling rate
of 100Hz, resulting in a length of 10, 000 data points. In all signals, linear trend has been detected
(pre-processing step) and subsequently removed.

4.2. Experimental Procedure

As outlined in Section 3, the one-vs-all classification strategy has been used. Thus, 3 different DNN
binary classifiers have been trained independently, one for each perturbation type. After thorough
experimentation with different network types and sizes, the optimum architecture for identification
of perturbations of Type II & III is illustrated in Figure 2. The first two convolutional layers have
64 and 32 filters respectively, while the LSTM layer is comprised of 20 units. Obviously, the FC
layers have a single sigmoid-activated output, denoting whether the signal belongs or not to the
respective class (perturbation).

Binary OutputFCLSTM
Average
Pooling

Convolution 1D
32 filters

Convolution 1D
64 filters

Input signal

Figure 2: Deep Neural Network Architecture

Type I perturbations proved to be harder to learn (compared to the rest), requiring a smaller archi-
tecture, as larger ones were prone to overfitting. The optimal network included two 1D convolu-
tions (with 48 and 24 filters, respectively), an average pooling layer and two FC ones (the first with
10 units and the final with 1).

All models have been trained for 20 epochs, using the Adam optimizer [24] and binary cross-
entropy as the loss function. The batch size was set to 24 and due to the imbalance in the number
of samples per class (signals per perturbation type), class weights have been used. Particularly, for
the first network, a weighting scheme of 2 : 1 was used (i.e. perturbations of Type I were twice
as important as perturbations of Types II & III), while the second and third classifiers have been
trained on a 1 : 5 weight ratio.

4.3. Results

Initially, each classifier has been evaluated on its own task, i.e. classifier 1 for classifying perturba-
tions of Type I and so forth. The results of this single-label classification, on a held-out test set are
presented in Table 2. The accuracy for the latter two classifiers is exceedingly high, but it drops
off a bit for the first. Nevertheless, the overall results are considered to be quite satisfactory.

The mean validation accuracy per perturbation type of the overall architecture (multi-label clas-
sification) is outlined in Table 3. The detection accuracy for the coolant oscillation perturbations
(Types II & III) is competent. The performance on perturbations of a cluster of fuel assembly
synchronously vibrating (Type I), on the other hand, is sub-par. This is attributed, in part, to the
fact that the task is more difficult in nature, causing the models to be more prone to overfitting.
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Table 2: Validation Accuracy for Single-label Classification

Classifier 1 2 3

Accuracy 84.02% 97.61% 98.35%

Table 3: Mean Validation Accuracy for Multi-class Classification

Perturbation Type I II III

Overall architecture 62.4% 85.5% 79.2%

Finally, the performance of the overall architecture is further evaluated upon a set of information
retrieval metrics (Table 4) [25]. Precision is the probability of correctly identifying a perturbation
type. Recall is the probability of identifying all instances of a perturbation type. The F1-score
is their harmonic mean, while support designates the number of occurrences of each perturbation
in the validation set. Their average (5th row) is computed on each sample individually and then
averaged over all samples (sample average). All metrics, apart from the last one, are given on
the percentage scale. In general, the desirable classifier performance is to exhibit the same levels
of precision & recall for each class (perturbation), with both metrics being as high as possible.
From the first 3 rows of Table 4 it is evident that the proposed architecture achieves more than
satisfactory results, with the minor exception of the recall metric on Type I perturbations.

Table 4: Detailed Report for Multi-Label Classification

Precision Recall F1-Score Support

Type I 91% 64% 75% 6,144
Type II 84% 92% 88% 3,840
Type III 87% 75% 80% 3,840

Average 89% 74% 79% 13,824

5. CONCLUSION

In this paper, a novel methodology for anomaly detection in nuclear reactors, based on measuring
neutron noise levels, has been presented. The outlined technique employs one-vs-all multi-class
classification, combining some state-of-the-art DNN architectures, such as CNNs and RNNs, to
achieve perturbation identification. The aforementioned models have the capability of uncovering
complex relationships in signals and for this reason, they achieve significant performance.
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Experiments have been performed on simulated data for PWRs, modelling 3 different perturbation
types. The obtained results on a variety of relevant metrics, both in single and multi-class classifi-
cation cases, have been encouraging so far and call for the test of the overall approach on real plant
measurements.

Even though Type I perturbations may be considered a very special case, both in nature and in
location, the applicability of the method is not affected, as it is actually a modular architecture for
anomaly detection that can easily be extended to account for even more perturbation types than
those considered in the experiments.
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