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ABSTRACT

The early detection of anomalies through the analysis of the neutron noise recorded by in-
core and ex-core instrumentation gives the possibility to take proper actions before such
problems lead to safety concerns or impact plant availability. The study of the neutron
fluctuations permits to detect and differentiate anomalies depending on their type and
possibly to characterize and localize such anomalies. This method is non-intrusive and
does not require any external perturbation of the system. To effectively use the neutron
noise for reactor diagnostics it is essential to accurately model the effects of the anomalies
on the neutron field. This paper deals with the development and validation of a neutron
noise simulator for reactors with different geometries. The neutron noise is obtained
by solving the frequency-domain two-group neutron diffusion equation in the first order
approximation. In order to solve this partial differential equation a code based on a high
order finite element method is developed. The novelty of this simulator resides on the
possibility of dealing with rectangular meshes in any kind of geometry, thus allowing
for complex domains and any location of the perturbation. The finite element method
also permits automatic refinements in the cell size (h-adaptability) and in its polynomial
degree (p-adaptability) that lead to a fast convergence. In order to show the possibilities
of the neutron noise simulator developed a perturbation in a hexagonal two-dimensional
reactor is investigated in this paper.
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1. INTRODUCTION

Being able to monitor the state of nuclear reactors while they are running at nominal conditions
is a safety requirement. The early detection of anomalies gives the possibility to take proper
actions before such problems lead to safety concerns or impact plant availability. The CORTEX
project [1], funded by the European Commission in the Euratom 20162017 work program, aims
at developing an innovative core monitoring technique that allows detecting anomalies in nuclear
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reactors, such as excessive vibrations of core internals, flow blockage, coolant inlet perturbations,
etc. The technique is based on using the inherent fluctuations in neutron flux recorded by in-
core and ex-core instrumentation, referred to as neutron noise, from which the anomalies will be
detected and differentiated depending on their type, location and characteristics. The method is
non-intrusive and does not require any external perturbation of the system.

To be able to detect, localise and quantify a perturbation in real-time, an automatic algorithm based
on machine learning has to be provided with a large set of simulation data [2]. As the number of
experiments to effectively train the machine learning algorithms is huge, these experiments must
be carried out in a time efficient manner, i.e. fast running techniques are required to carry out the
simulations. One useful technique to solve the effect of a perturbation in the neutron noise is to
resolve the frequency-domain first-order neutron noise equation in the diffusion approximation.
This is a partial differential equation with complex numbers.

This work presents a neutron noise simulator developed with the finite element method, called
FEMFFUSION. It can deal with any kind of geometry allowing complex domains and any location
of the perturbation. In other words, it computes the same quantities as the frequency domain code
CORE SIM [3] but allowing any kind of geometry and a more adaptable structure. Also, the
finite element method also permits automatic refinements in the cell size (h-adaptability) and in its
polynomial degree (p-adaptability) that leads to an exponentially fast convergence.

2. THE NEUTRON DIFFUSION EQUATION

In the two energy group approximation, the time-dependent neutron diffusion equation with one
group of delayed neutrons, where the matrices are denoted by [ ], are defined as [4]

[v−1]
∂φ

∂t
− ~∇ ·

(
[D]~∇φ

)
+ [ΣT ]φ = (1− βeff)χ(νΣf )

Tφ+ λeffχC, (1)

∂C
∂t

= βeff(νΣf )
TΦ− λeff C, (2)

where the cross sections matrices are defined as

[v−1] =

[ 1
v1

0

0 1
v2

]
, [ΣT ] =

[
Σa1 + Σ12 0
−Σ12 Σa2

]
,

[D] =

[
D1 0
0 D2

]
, νΣf =

[
νΣf1

νΣf2

]
, χ =

[
1
0

]
.

The main unknown of the neutron diffusion equation is the space- and time dependent neutron
flux, in its usual separation in the fast and thermal energy groups φ =

[
φ1(~r, t), φ2(~r, t)

]T
, and

the neutron precursor concentration C(~r, t). All other quantities have their usual meaning [4].

2.1. Static problem

For a given transient analysis in a core reactor, usually, a static configuration of the reactor is
considered as initial condition. Associated with the time dependent neutron diffusion equation, (1)
and (2), the static solution takes the form

−~∇ ·
(

[D]~∇φ
)

+ [ΣT ]φ =
1

keff
χ(νΣf )

Tφ. (3)
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This problem is known as the Lambda Modes problem for a given configuration of the reactor core.
To solve the problems (3), a spatial discretization of the equations has to be selected. In this work,
a high order continuous Galerkin finite element method is used leading to an algebraic eigenvalue
problem associated with the discretization of equation (3) with the following block structure,[

L11 0
−L21 L22

]
Φ̃ =

1

λ

[
M11 M12

0 0

]
Φ̃ , (4)

where Φ̃ =
[
φ̃1, φ̃2

]T
are the algebraic vectors of weights associated with the fast and thermal

neutron fluxes. More details on the spatial discretization used can be found in [5].

The resulting algebraic eigenvalue problem is solved using the Block Inverse-Free Preconditioned
Arnoldi Method (BIFPAM) [6] or Newton iteration solver [7].

3. FIRST-ORDER NEUTRON NOISE THEORY

The first-order neutron noise theory is based on splitting every time dependent term, expressed
as X(~r, t), into their mean value, X0,which is considered as the steady-state solution, and their
fluctuation around the mean value, δX as,

X(~r, t) = X0(~r) + δX(~r, t). (5)

The fluctuations are assumed to be small compared to the mean values. This allows to neglect
second-order terms (δX(~r, t)× δX(~r, t)) ≈ 0. Also, the fluctuations of the diffusion coefficients
are neglected and δDg ≈ 0 is assumed. This approximation was demonstrated to be valid for light
water reactor applications [8]. Thus, the first-order neutron noise equation can be written as [9].

−~∇ ·
(

[D]~∇δφ(~r, ω)
)

+ [Σdyn] δφ(~r, ω) = δS(~r, ω), (6)

The perturbation source term δS(~r, ω) is given by the frequency-domain as changes in the cross
sections :

δS(~r, ω) =

[
δS1(~r, ω)
δS2(~r, ω)

]
= φs δΣ12 + φa

[
δΣa1

δΣa2

]
+

1

keff
[φf ]

[
δνΣf1

δνΣf2

]
, (7)

where

[Σdyn] =

[
Σ1 −νΣf2

(
1− jωβeff

jω+λeff

)
−Σ12 −Σa2 + jω

v2

]
, φs =

[
−φ1

φ1

]
,

[φa] =

[
φ1 0
0 φ2

]
, [φf ] =

(
1− jωβeff

jω + λeff

)[
φ1 φ2

0 0

]
,

Σ1 = Σa +
jω

v1

+ Σ12 − νΣf1

(
1− jωβeff

jω + λeff

)
.

By comparing with Eqs. (3), it can be seen that the neutron noise equation is an in-homogeneous
equation with complex quantities that has to be solved after the steady-state solution is obtained
because φ1 and φ2 represent the steady state fast and thermal neutron fluxes, respectively. The re-
lated static eigenvalue problem must be solved with the same spatial discretization as the frequency
domain neutron noise equation to get coherent results.
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Applying the continuous Galerkin finite element discretization to Eq. (6) leads to an algebraic
linear system of equation with the following block structure[

A11 A12

A21 A22

]
δΦ̃ =

[
S1

S2

]
, (8)

where δΦ̃ =
[
δφ̃1, δφ̃2

]T
are the algebraic vectors of weights associated with the fast and thermal

neutron noise fluxes.

4. NUMERICAL RESULTS

To study the possibilities of the FEMFFUSION code, a two-dimensional hexagonal reactor (2D
IAEA benchmark) was considered. This benchmark has a 1/12 reflective symmetry but as the
inserted perturbation is not symmetrical, the whole reactor is solved. The fuel assembly pitch is
20.0 cm. Table 1 shows the cross section data for the this reactor. Figure 1 shows the materials
layout.

A perturbation in the fuel assembly marked with material 5 of 10% of its cross sections reference
values needs to be solved inserted to verify the developed noise simulator:

δΣa1 = 0.00095042, δΣa2 = 0.00750058, δΣs12 = 0.00177540,

δΣf1 = 0.00058708, δΣf2 = 0.00960670.

Table 2 shows the convergence of the solution depending on the polynomial degree used in the
FEM shape functions (FED). We have defined the following error indicators

∆keff = keff − k∗eff,

εg = 100× 1

NA

NA∑
a=1

φa,g − φ∗
a,g

φ∗
a,g

%, g = 1, 2,

ηg = 100× 1

NA

NA∑
a=1

δφa,g − δφ∗
a,g

δφ∗
a,g

%, g = 1, 2.

where values with ∗ represent reference results extracted from [10] for the steady-state results and
a very fine FEM computation with a finite element polynomial degree equals to 7 and each cell
refined into 16 cells for the neutron noise results. φ∗

a,g and δφ∗
a,g are the mean flux and the average

noise flux, respectively, at assembly a. NA is the number of assemblies in the reactor. Figure 2
represents the mean assembly flux values for the steady state solution using FED = 3. Figure 3
presents the neutron noise magnitude and Figure 4 displays the neutron noise phase. The results
shows that the fast neutron noise has ab influence over a wider region. On the other hand, the
thermal neutron noise is mostly localized. Also, for this perturbation, the phase of the neutron
noise is similar throughout the entire reactor.

Proceedings of the PHYSOR 2020, Cambridge, United Kingdom



Physics of Reactors Transition to a Scalable Nuclear Future

Table 1: Cross section data for 2D IAEA reactor.

Material Group Dg Σag νΣfg Σ12

1 1 1.5 0.010 0.000 0.020
2 0.4 0.080 0.135

2 1 1.5 0.010 0.000 0.020
2 0.4 0.085 0.135

3 1 1.5 0.010 0.000 0.020
2 0.4 0.013 0.135

4 1 1.5 0.010 0.000 0.040
2 0.4 0.013 0.000

5 1 1.5 0.010 0.000 0.020
2 0.4 0.013 0.135

Code FED DoFs ∆keff ε1 ε2 η1 η2
(pcm) (%) (%) (%) (%)

FEMFFUSION 1 553 680 23.31 19.34 21.53 15.81
FEMFFUSION 2 2119 95 2.51 1.97 2.40 1.79
FEMFFUSION 3 4699 6 0.25 0.17 0.23 0.17
FEMFFUSION 5 12 901 0 0.00 0.00 0.04 0.04

Table 2: Convergence table for 2D IAEA reactor.
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Figure 1: Materials layout in the 2D-IAEA benchmark.
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Figure 2: Static neutron fluxes in the IAEA reactor.
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Figure 3: Magnitude of the noise in the 2D IAEA reactor.
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Figure 4: Phase of the noise in the 2D IAEA reactor
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5. CONCLUSIONS

This work presents a neutron noise simulator developed with the finite element method. It can deal
with different kinds of geometry allowing complex domains as hexagonal reactors and any location
of the perturbation. Also, the finite element method permits automatic refinements in the cell size
and in its polynomial degree that leads to fast spatial convergence. This code will permit to train
machine learning algorithms to detect perturbations in real-time in operating nuclear reactors.
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