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Abstract

The paper presents the development of a strategy for the fine-mesh full-core computation of neutron noise in
nuclear reactors. Reactor neutron noise is related to fluctuations of the neutron flux induced by stationary per-
turbations of the properties of the system. Its monitoring and analysis can provide useful insights in the reactor
operations. The model used in the work relies on the neutron diffusion approximation and requires the solution of
both the criticality (eigenvalue) and neutron noise equations. A high-resolution spatial discretization of the equa-
tions is important for an accurate evaluation of the neutron noise because of the strong gradients that may arise
from the perturbations. Considering the size of a nuclear reactor, the application of a fine mesh generates large
systems of equations which can be challenging to solve. Then, numerical methods that can provide efficient solu-
tions for these kinds of problems using a reasonable computational effort, are investigated. In particular the power
method accelerated with the Chebychev or JFNK-based techniques for the eigenvalue problem, and GMRES with
the Symmetric Gauss-Seidel, ILU, SPAI preconditioners for the solution of linear systems, are evaluated with the
computation of neutron noise in the case of localized perturbations in 1-D and 2-D simplified reactor cores and in
a 3D realistic reactor core.

Keywords: reactor neutron noise, k-eigenvalue problem, GMRES, nonlinear acceleration, JENK, SPAI
preconditioner

1. Introduction

Neutron noise in power nuclear reactors consists of fluctuations of the neutron flux. These fluctuations are small
in comparison with the main trend of the neutron flux and they are induced by perturbations such as vibrations
of reactor components, oscillations of coolant temperature or density, etc. The perturbations which act as neutron
noise sources can be problematic for the operation of the nuclear reactors and their effects need to be monitored and
analyzed. For this purpose one should determine the transfer function of the reactor which describes the system
response to any possible perturbation. The reactor transfer function can also be used for diagnostic purposes, i.e. to
identify the neutron noise source knowing the effect on the measured neutron flux (Williams (1974), Thie| (1981,
Pazsit and Demaziere| (2010)). Consequently, the computation of the transfer function of nuclear reactors is of
primary importance.

As for the simulations of the static flux in a nuclear reactor, computational capabilities for reactor neutron noise
rely on the neutron transport equation. The solution of this equation is challenging for these kinds of problems
because a nuclear reactor core is a very heterogeneous and large system. Then a typical, simplified approach for
the full-reactor core computation of neutron noise is the diffusion approximation.

Most existing neutron diffusion-based simulators for neutron noise applications use finite-difference methods
for the spatial discretization of the equations, direct methods for the solution procedure, and relatively coarse rep-
resentations of the physical system. This approach can nevertheless be inadequate for neutron noise simulations.
In fact neutron noise sources are often highly localized in space and induce in their vicinity strong gradients of
the neutron flux. For an accurate prediction of this behavior, a very fine spatial discretization is therefore required.
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The application of fine computational meshes leads to large systems of algebraic equations, whose solution with
direct methods is questionable or even prohibitive in terms of computer memory and running time.

The objective of the work presented in this paper, is to investigate a strategy that can be used for the solution of
the diffusion-based neutron noise equations over fine meshes with a feasible computational cost. Then, different
numerical methods have been implemented and evaluated over three neutron noise problems based on a 1-D and a
2-D homogeneous reactor, and a 3-D realistic reactor.

The structure of the paper is as follows. Section 2| presents the governing equations of the problem. Section
discusses the challenges associated to the numerical solution of the neutron noise equations. Section 4] deals with
the numerical methods studied in the current work. Section[5]presents the results for three test cases. In Section []
some conclusions are drawn.

2. Governing equations

The two-energy group time-dependent neutron diffusion equations along with the equation for one family of
delayed neutron precursors read as:
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where the macroscopic removal cross-section is defined as:
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Indices 1 and 2 denote the fast and the thermal energy group. Eqs (1] & [2]) are the balance equations of fast and
thermal neutrons, respectively. Eq. (3) is the neutron precursor balance equation. 3,.(, t) describes at once the net
neutron flow from the fast to the thermal energy group taking into account the neutron down- and upper-scattering.
In Eqs (I] & [2), the neutron diffusion coefficients (D) are considered as time-independent. When solving for a
steady-state, critical reactor, there exists an equilibrium between the production and the decay of the precursors
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(EC (r,t) = 0). Then the above system of equations takes the form:
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If the system is not critical, a steady-state solution can still be obtained by re-normalizing the fission source with
a factor k. The matrix form of Eqs (5 & [6)) when a k& normalization factor is used, is written as follows:
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To obtain the Neutron Noise Diffusion Equations (NNDEs) all the time-dependent terms of Eqs (1] - [3), gener-
ically expressed as X (, t), are split into their mean values X(7) (corresponding to the steady-state configuration
of the system) and their fluctuations X (7, ¢) around their mean values so that they are written as:

X(r,t) = Xo(r) + 6X(r,t) )
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Considering small fluctuations compared to the mean values and stationary processes, and neglecting the second
order terms (linear theory), the two-energy-group NNDE:s in the frequency domain are obtained after a temporal
Fourier transform:
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where the complex components E;’;ﬁ and qﬁcm as well as the real ones ¢, and ¢, are defined in|[Appendix Al As
the RHS factors ¢c”t ¢, and ¢, imply, the solution of the neutron noise problem requires the computation of the

steady-state neutron fluxes from Eq. (8).

The spatial discretization is based on the approach used by (Demaziere, 2011a). Accordingly, the nuclear reac-
tor core is described with N discrete volumes (nodes) over which the governing equations are spatially averaged.
The diffusion operator is discretized with a finite-difference scheme together with a suitable relationship between
the surface averaged neutron currents and the node-averaged scalar neutron fluxes. The discretization scheme is

summarized in

3. Challenges of solving fine-mesh neutron noise problems

The simulation of neutron noise with the model introduced in Section 2 consists of two steps: first, the solution
of Eq. () and then the solution of Eq. (I0). After the spatial discretization, Eq. (8) can be summarized into the

matrix form: 1

Acrit(ﬁcm’t - EF‘I)cm't (11)

or after rearr: angement:
[A F]chit = k(pcrit (12)
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where A..;; and F are real matrices. The normalization factor k and the vector ®...;; represent the eigenvalues and
the eigenvectors of matrix [A_} F), respectively. Only the largest k and its associated eigenvector are of interest
because they correspond to the effective multiplication factor (k.rs) and to the static neutron flux (i.e. the only
eigenvector having the same sign throughout the entire system). The standard algorithm for solving the eigenvalue

problem is the Power iteration or Power Method (PM) (Lewis and Miller (1984)) and it is presented in Alg. (I).

Algorithm 1 Power Method
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The main advantage of PM is that it guarantees the convergence to the largest eigenvalue and its associated eigen-
vector (“‘dominant” or “fundamental” eigenpair) and at the same time is very simple. For the generic iteration /,
I+

mt where

the vector of unknowns ®“"V) is obtained from the solution of the linear system Acmqﬂfl) S F 30
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k® and <I> i come from the previous iteration. Thus PM gives rise to a sequence of linear systems
Once the static neutron fluxes for the critical reactor configuration are known, Eq. (10) can be solved. The
discretized form of the latter equation can be written as:

Anoiseq)noise = Snoise ( 1 3)



where A,,,;s is the complex coefficient matrix derived from the LHS of Eq. and the vector S,,,;s is the RHS
of Eq. (10).

The numerical efficiency of PM depends on two factors: its convergence speed and the computational effort
required from solving the linear system at each iteration. The convergence speed is related to the spectrum of the
iterative matrix A_% F. More specifically, it is determined by the Dominance Ratio (DR) of the iterative matrix
which is the ratio between the second largest and the largest (dominant) eigenvalue (k;/ko); when DR =~ 1,
PM converges slowly. In nuclear reactor applications, it often happens that DR is greater than 0.95. Under this
condition, PM might be too slow making the analysis of full-core configurations discretized with fine meshes even
impossible.

For both the criticality and noise problems, the applied discretization algorithm generates sparse systems that
in case of 3-D configurations with fine meshes are also large. The solution of these linear systems with direct
methods may require a burdensome computational effort because of different reasons. First, the inversion and
decomposition of the coefficient matrix generates less sparse matrices (the so-called fill-in phenomenon) imposing
high storage requirements. Second, direct methods usually scale poorly with the size of the system in terms
of operation counts (Benzi (2002)) increasing the computational time. Besides, the construction of the large
coefficient matrices may be time-consuming and thus needs special attention.

To summarize, this work aims to solve fine-mesh 3-D full-core neutron noise diffusion problems with a rea-
sonable computational cost. This induces the following challenges:

* Fast construction of the coefficient matrices.
* Acceleration of PM for the eigenvalue calculation.
* Efficient solution of the linear systems.

In this context, a reasonable computational cost is such that the simulations can be performed in no more than a
few hours with no use of parallel computing and no more than 10 GB of RAM.

4. Strategy for solving fine-mesh neutron noise problems

In this section the strategy and methods used to solve numerically the overall neutron noise problem over a
fine mesh are introduced. The coefficient matrices and their construction are first discussed. Two methods are
considered in order to accelerate PM when applied to Eq. (IT), namely the Chebyshev method and a method
based on the Jacobian Free Newton Krylov technique. The solution of the linear systems within PM as well as of
Eq. (I3) for determining the neutron noise, are obtained from the application of GMRES. For the improvement of
the performance of the scheme, three preconditioners are combined with GMRES, i.e. Symmetric Gauss-Seidel
(SGS), ILU and SPAL

4.1. Construction of the matrices

The matrices A.,; and A, that appear in Eqs (I1] & [13)) are large sparse banded matrices of dimension
2N x 2N where N is the number of spatial nodes and 2 is the number of the energy groups. For the matrix
construction the so-called “coordinate format” is used. This format stores the diagonals in three vector-arrays of
known length: one containing the values of the nonzero entries, one integer array containing their row indices
and another integer array containing their column indices. When all diagonals have been computed, the matrix is
assembled and stored in a compressed sparse matrix format. Following this strategy, one operates on vector-arrays
of known length during the construction phase, avoiding any dynamic allocation of a compressed sparse matrix
that would reduce the speed of the process. The matrix F' consists strictly of two diagonals. Thus, the storage of
the coordinates of its elements is not required. The structure of the matrices is reported in Table (TJ).



Table 1: Structure of the problem matrices A;.;¢, Anoise and F.

Diagonal Value Model dimens. Comment
Acrit,(i=4) - (ZN:ZJJ’Z a;n)}zi et = e fo?“ =N 1,2,3-D main diagonal
— <ZN:z,y,z ag’n> —Xa2,n for i>N

Acrit,(j=i+1) —bg n 1,2,3-D upper

Acrit,(j=i—1) —Cgn 1,2,3-D lower

Acrit,(j=i—N) Srn 1,2,3-D upper
Acrit,(j=i+Ny) —bYn 2,3-D upper, bunch of diag.
Acrit,(j=i—Ny) —Cyn 2,3-D lower, bunch of diag.

Acrit,(j=i+N>) —bg n 3-D upper

Acrit,(j=i—N,) —Con 3-D lower

Anoise,(i=j5) _ (ZN:z’yi ag’n) l foﬁt(wzw for i< _N 1,2,3-D main

- (Z&:z,y,z ag,n) - (Za,2,n + E) for 1> N

Anoise,(j=i+N) % (1 - ifffk) 1,2,3-D upper

Anoise,(j=i+1) —bg n 1,2,3-D upper

Apoise,(j=i—1) —Cgn 1,2,3-D lower
Anoise,(j=i+Ny) —by n 2,3-D upper, bunch of diag.
Anoise,(j:z‘—Ny) —Cg,n 2,3-D lower, bunch of diag.

Anoise,(j=i+Ns) =b3 n 3-D upper

Apoise,(j=i—N2) —Cim 3-D lower

Flij) TUEf L f?r isHN 123-D main

0 for i>N
F(j:HN) —v¥f2n 1,2,3-D upper

4.2. Solution of the large eigenvalue problem

Once the matrices are built, the next step is to solve Eq. (IT). As mentioned in Section 3] PM is applied. The
method is known to often converge slowly, so the implementation of an acceleration technique is important. In
nuclear reactor criticality calculations, PM is often accelerated with the technique of the Chebyshev polynomials.
In this work the Chebyshev method is compared with an alternative, i.e. the method of nonlinear acceleration
based on the Jacobian Free Newton Krylov (JFNK) algorithm. The latter being a generic Newton-based method,
allows to obtain quadratic convergence rates. Exploring the performance of this option is of interest since JNFK-
based algorithms have attractive features (see discussion in Section [4.2.2)) and their implementation for reactor
physics problems is an active research topic. Various JFNK-based algorithms for reactor criticality analysis have
been proposed. The version used has been selected because of its easy adaptation to PM and the satisfactory
performances reported in literature.

4.2.1. Chebyshev acceleration of the PM solver

The utilization of Chebyshev polynomials is a traditional method for accelerating PM (Saad (2011)) and it was
first proposed for reactor criticality problems by Ferguson and Derstine (1977). The method of Chebyshev acceler-
ation updates the neutron flux estimate of a PM iteration as a linear combination of the solutions of some previous
iterations. The coefficients of the linear combination are determined from the minimization of the estimation error
with the Chebyshev polynomials. Various alternatives of the method are available; the one implemented in this
work is described by |[Hebert (1985). After some initial free PM iterations a sequence of Chebyshev acceleration
cycles starts. Within each cycle, the neutron flux estimates are extrapolated from the previous estimates using the
calculated coefficients. The method also requires DR estimates that are updated at the end of each acceleration
cycle. A simplified presentation of the algorithm is given in Alg. (2). For completeness, a detailed description
of the Chebyshev acceleration algorithm used in this work is presented in Hereinafter, Chebyshev
accelerated PM will be refered as PM-Cheb.



Algorithm 2 PM-Cheb: Simplified description

for [ > 1 (PM iteration)
PM updates flux
PM updates k

if free PM iteration
Update DR estimate (Eq. (C.1))
elseif Cheb acceleration cycle is on
Cheb calculates the extrapolation factors (Eqs -
Cheb updates flux extrapolating flux estimates from previous iterations (Eq. (C.2))
if last iteration of the current Cheb acceleration cycle
Update DR estimate (Eq. (C.11))
end
end

end

4.2.2. Nonlinear acceleration of the PM solver

A second option is tested for the acceleration of PM. It is based on a JENK approach and follows the work
of (Gill and Asmy| (2009). The method allows PM to be easily encapsulated into a Newton scheme without the
need for any modifications. In addition, |Gill and Asmy| (2009) showed that it can provide higher performance in
multigroup neutron diffusion problems, than other Newton-based approaches.

The basis of the method is that PM may be seen as a fixed point iteration of the form:

wl ) — f(u(l)) (14)

The vector of the unknowns u contains the flux vector and the eigenvalue:
u = (15)

While the ordinary PM updates the flux vector ®,,;; and the eigenvalue separately, in two steps, Eq. (I4) considers
both components as inseparable parts of the solution vector w. The fixed point iteration f is denoted as:
L
—A F(I)cm't
flu)= |k _ (16)
k(u)

where k(u) represents the updating procedure for k. A non-linear system is defined by setting:
r(u)=u— f(u)=0 (17)

where 7 is the vector of the nonlinear residuals. A linearized form of Eq. is obtained using the Newton
method:

J(uD)ou? = —r(u®) (18)
Y = 40 4 5uW, forl=1,2, ... (19)
where J(u) = ag(:) is the Jacobian matrix, and du is the Newton correction vector. The Newton iteration

algorithm is shown in Alg. (3).



A JFNK method is used to avoid the high computational cost due to the construction of the Jacobian matrix J,
and is summarized in Alg. (). The matrix-vector products Jv required in the Krylov method, are approximated

as follows:
r(u+ev) — r(u)

Jv = (20)

€
where v is the Krylov vector and ¢ is a small perturbation parameter. Many options exist for the calculation of .
In this work the following formula (Knoll and Keys, [2004) is used:

1 2N+1
CEIE @y

where d is the square root of machine roundoff, (2N + 1) is the dimension of the linear system.
In the current scheme, an inexact JENK variation is applied. The convergence of the linear system within each
JENK iteration [ is monitored with the following criterion:

I T (w)ou® +r®) || < A r? | (22)

where the residual norm is reduced by the factor . The procedure is inexact because Eq. (I8) is not solved tightly
using a very small . Instead, it starts with larger values which are progressively reduced. This strategy aims
to avoid the phenomenon of “oversolving”. This practically implies that a very accurate Krylov solution when
the Newton one is far from convergence can cause negative effects to the convergence of the global solution.
Discussion about this matter can be found in Shadid et al.| (1997) and Tuminaro et al.| (2002). In this work,
~ is experimentally selected to be constant and equal to 10~!. However, more sophisticated ways able to vary
dynamically +, exist (Eisenstat and Walker| (1996)).

Gill and Asmy| (2009) reported that PM-JFNK converges to an eigenpair other than the dominant one when an
initial guess close to that eigenpair is provided. In order to avoid this issue, a few free PM iterations are performed
before starting PM-JFNK.

As discussed above, the implementation of this acceleration scheme only needs a JFNK solver in which the
non-linear function is evaluated by the single PM iterations. Another advantage is that the preconditioner for the
original PM can still be used within the evaluations of the non-linear function. For the solution of the linear system
of Eq. (18), no preconditioning is included. The development of a preconditioner for this problem is not trivial and
it is a subject for future research. In fact J is a function of w and changes with the Newton iterations. In addition,
J is not explicitly constructed in a Jacobian-free approach, so it is not available. Hereafter, PM accelerated with
JFNK is referred to as PM-JFNK.

4.2.3. Outer/inner iteration

The PM and PM-Cheb solvers consist of one level of outer/inner iterations. The term outer refers to the
iterative process of updating ®.,.;; and k and the term inner refers to the iterations for the solution of the linear
system.

PM-JENK consists of two levels of outer/inner iterations. The first level consists of the Newton (outer) iter-
ations needed for the convergence of the solution of the non-linear system, and the Krylov (inner) iterations for
the solution of the linear system of Eq. (see (Alg. @)). The second level consists of outer iterations used for
updating ®.,.;; and k£ within the non-linear function evaluations f, and inner ones for solving the linear systems
within f.

Hereinafter, the terms outer/inner iterations are used for PM, PM-Cheb and the second level of PM-JFNK, and
the terms Newton/Krylov correspond to the first level of PM-JFNK.

4.2.4. Convergence criteria
The following convergence criteria are employed for PM (Duderstadt and Hamilton| (1976), [Hebert (1986),
Gill and Asmy|(2009)):
KD — kD) < ¢ (23)
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Algorithm 3 PM-JFNK: Newton iteration

u given

for [ > 1 (Newton iteration)
r® = ol — f(u®) for 1>1
sul) = —J 1 (u®) . r® (Krylov solver)
wD = 4O 4 52O

end

Algorithm 4 PM-JFNK: Matrix-vector products

for [ > 1 (Newton iteration)

r(u®) = u® — f(u®)
for [ > 1 (Krylov iteration)

Krylov asks for Jv(x)

Perturb the solution estimate: w2 = u® + sp(lx)
Perform a single PM iteration to calculate f (uz(ole’ﬁ))
Calculate: r(u'%)) = wll%) — f(ull))

(Ix)
Calculate the matrix-vector product: Jv(x) =

r(upds)—r(w®)
€

end

end

(I+1) )
maz;(|P e i — Poyit s
(’ crit, 0 crit, ‘) < € (24)
maxi(|q)crit,i|)
i — Pl
max; % < €3 (25)
o®
crit,i

In the case of slow convergence the magnitude of the differences between successive iterations may be small even
though the error of the solution is still large. For this reason, a residual-based criterion is also used:

| k) A, @) — P |,< ¢y (26)

crit crit

where the subscript 2 indicates the Euclidean norm. Eq. (26) checks the residual error obtained by entering the
current estimate of the solution in the matrix equation to be solved.

4.3. Solution of large linear systems

For the current framework, linear systems need to be solved at different stages. Linear systems arise from
each iteration of PM because of Eq. (TI)). If the PM-JFNK scheme is applied, additional ones are due to Eq. (I8).
Finally, the solution of the linear system Eq. (I3) is required for the calculation of the neutron noise. These linear
systems consist of sparse matrices and their size may be large when a fine mesh is used for the spatial discretization
of the equations. Then iterative linear solvers are a more preferable choice since the storage requirements and the
number of operations are less demanding in comparison to direct methods. On the other hand, they are often slow
or even fail to converge, so preconditioning is necessary. The iterative GMRES method is selected and discussed
below together with 3 preconditioners, namely SGS, ILU and SPAL
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4.3.1. GMRES method

For the solution of large, sparse and non-symmetric linear systems such as the ones involving the matrices
Air and A, ise, the Krylov-class Generalized Minimal RESidual (GMRES) method (Saad and Schultz| (1986))
is selected. The general idea behind GMRES is that a chain of orthonormal vectors can be generated to construct
the basis of a Krylov subspace K ;:

_ linear linear 2_linear 7—1,linear
Kj = Span(’l“o 5 ATQ ) A L) [RARS A T ) (27)

where 7" = b — Az is the linear residual and x is the initial guess of  for the linear system Ax = b. The

solution of the linear system is constructed iteratively as a linear combination of the Krylov vectors (Eq. (27)) and
can be written as:

x;=xo+ Y Bi(A)rfer (28)

where j is the Krylov iteration index and the scalars 3; are calculated to minimize the residual.

The use of matrix-vector products (A)‘rknee™ by GMRES is advantageous when, for instance, the method is
combined with the PM-JFNK algorithm described in Section #.2.2] The estimation of these products can in fact
replace the construction of the Jacobian matrix. In addition, the property is also helpful because it allows the
implementation of the preconditioners in the form of matrix-vector products, a necessary feature when large linear
systems are solved. The cost of one GMRES iteration grows with the number of iterations. Therefore, since this
work targets large linear systems, GMRES is restarted after a number, say n, of iterations, with x,, as the initial
guess. For restarted GMRES the notation GMRES(n) is used.

4.3.2. Preconditioning
The purpose of preconditioning (Benzi, 2002) is to improve the spectral properties of the coefficient matrix and
thus the performance of the linear solver. Having a clustered spectrum of eigenvalues around unity often results in
rapid convergence. If Az = b is a generic linear system and P is a non-singular matrix that approximates A ™',
then the left preconditioned form is:
PAx = Pb (29)

Generally, one can classify the preconditioners into physics-based and algebraic. The former are problem-dependent
and thus very efficient. However, they may require a significant developmental effort. The latter may be less effi-
cient but at the same time they are general-purpose and easily applicable requiring only information contained in
A. This work focuses on algebraic preconditioners.

A reasonable initial choice is the SGS preconditioner Pggs. The coefficient matrix A of the linear system is
decomposed as: A = L + D + U where L is a strictly lower triangular matrix, U 1is a strictly upper triangular
matrix and D is a diagonal matrix containing the main diagonal of A. From the split an incomplete factorization
is derived: A ~ (D + L)D (D + U). Based on this factorization, P is defined as:

1

Psecs=((D+L)D ' (D+U)) =(D+U)'DD+L)™" (30)

The main advantage of Pgqg is that, having A, the operation f = Pggsw can be replaced by two linear systems
and one matrix-vector multiplication, i.e. (D + L)z = w, ¢ = Dz and (D + U) f = c. Such linear systems are
solved fast performing forward/backward substitution of variables because of the triangular form of the coefficient
matrices. Thus, the fact that GMRES works with matrix-vector products, offers a great advantage because Pggs
can be applied to vectors.

The second choice is the Incomplete LU factorization (ILU) preconditioner P;;;;. ILU is based on the ap-
proximation A ~ LU where U is a lower triangular and U is an upper triangular matrix. Then P is defined
as:

Piy=(LU)'=U'L" (31)

Its implementation in GMRES has the same advantage that was pointed out for the case of SGS. ILU precondi-
tioners usually suffer from the fill-in phenomenon. When large linear systems are solved, as in this case, the fill-in
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phenomenon may create memory problems canceling the advantage that a sparse A offers. However, if a part of
fill-in is discarded during the factorization process, simple but still powerful preconditioners can be generated. The
no fill-in ILU factorization or ILU(0) which preserves the sparsity of the matrix A, is thus selected in this work. If
other versions than ILU(0) are desired, then their applicability to large systems may become questionable because
of the difficulty in parallelization (Benzi, 2002).

The last option is the SPAI (SParse Approximate Inverse) preconditioner Pgp4; developed by (Grote and
Huckle (1997). The central idea relies on the minimization of a suitable objective function to create an approxima-
tion of A~'. Since the perfect right preconditioner P would satisfy the relationship AP = I with I the identity
matrix, Pgp 47 is built by minimizing the Frobenius norm of the difference between I and APgpa;:

I T—APspar [ (32)
The objective function can be decoupled as:
I I—APspar 3= |l e;— Ap; |3 (33)
j=1

where e; is the jth column of the identity matrix and p; is the jth column of matrix Pgpa;. Thus minimizing
Eq. is equivalent to minimizing the sum of n independent individual least-square problems. This is useful
for parallel implementations. In this work, an adaptive version of SPAI is employed. In fact, the minimization is
stopped when the 2-norm of each column of I — APgp,; is less than a predefined tolerance esp4;. Therefore,
the quality and the construction cost can be controlled by tuning egp4;. For this reason, the notation SPAI(egpar)
is used.

Although the computational cost of SPAI preconditioner can be high, its performance can be powerful. Since
the criticality problem of Eq. (TT]) generates a sequence of linear systems with the same coefficient matrix, an initial
investment to an expensive but also efficient preconditioner seems attractive. Additionally, because GMRES can
not be parallelized easily, a part of the burden of the linear system solution may be transferred to an efficient parallel
preconditioner. In this work, SPAI is constructed with a third-party software (Grote and Hagemann| (2006))). Since
that version is limited to real numbers, this preconditioner is used only for the criticality problem.

5. Numerical results

The performance of the methods discussed in Section 4|is evaluated with three test cases respectively asso-
ciated with a 2-D one-region homogeneous reactor core, a 1-D one-region homogeneous reactor core, and a 3-D
Pressurized Water Reactor (PWR) fully-heterogeneous core. In all the cases, a localized, fluctuating perturbation
is introduced in the system. The first case of a 2-D one-region homogeneous reactor core is relevant because a
semi-analytical solution is available. The criticality and neutron noise solvers are investigated separately in order
to highlight their specific needs and features. After a satisfactory fine mesh is found, the different solvers are com-
pared. The second case of a 1-D one-region homogeneous reactor core is used to compare the behavior of GMRES
with respect to the criticality and neutron noise calculations. The third case of a 3-D full reactor core allows to
study the developed strategy when applied to a realistic configuration. The analysis also shows how a coarse-mesh
approximation of the noise source affects the neutron noise predictions. The criticality solvers are tested with
two different convergence criteria: a set of regular criteria where all tolerances (e1, €2, €3, €4, see Section[4.2.4)) are
equal to 107% and a set of tight criteria where all tolerances are equal to 1071, A flat flux distribution and k£ = 1
are taken as initial guess for all criticality calculations. In the case of PM-JFNK, two free PM iterations are used
at the beginning in order to ensure the convergence to the dominant eigenpair.

5.1. 2-D one-region homogeneous nuclear reactor core

This test case considers a 2-D one-region system near to criticality (k ~ 1). The 2-D configuration is obtained
from a cylindrical reactor core, by suppressing the axial dimension and taking a circular slice. The diameter of
the system is set to 2R=301 cm. The homogeneous macroscopic cross-sections, the diffusion coefficients and the
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Table 2: Macroscopic cross-sections and diffusion coefficients.

Y1 (em™1) a2 (em™1) s (em™1) Vs (em™1) Y (em™1) Dq (em) Dy (em)
0.0115 0.1019 0.0057 0.1425 0.0151 1.4376 0.3723
Table 3: Dynamic parameters.
Ber (=) | 1Y) | wnilem/s) | wa(em/s)
0.00535 0.0851 18230400 413067

dynamic nuclear parameters are representative of a PWR core, and are given in Tables (2] & [3). The noise source
is a point-like fluctuation of the macroscopic removal cross-section (X,.) at the center of the core with a frequency
of 1 Hz. The reference semi-analytical critical and noise solutions have been derived by |Demaziere and Andhill
(2005).

5.1.1. Criticality problem

The three criticality solvers based on PM, PM-Cheb and PM-JFNK are applied to the case of the 2-D one-
region system. For the solution of the linear systems of Eq. (IT), GMRES is preconditioned with SGS, ILU(0)
and SPAI(0.2) for all PM versions. The spatial domain is discretized according to a relatively coarse Cartesian
mesh, with 301x301 nodes, where Az = 1 cm and Ay = 1 cm. This computational grid leads to a system of 2N
= 140,962 equations (2 being the number of neutron energy groups, see Section [2)). The results of the different
criticality solvers are in good agreement with the semi-analytical solution. The same value, i.e. £k=0.99395,
of the dominant eigenvalue is estimated. As an example, Fig. (I) shows the comparison between the neutron
flux distribution calculated with PM-JFNK preconditioned with SPAI(0.2) and the analytical one. The numerical
solution reproduces the analytical solution satisfactorily. The significant discrepancy that exists at the boundary of
the system is attributed to approximation of the circular boundary with spatial discretization.

The numerical performances of the 3 solvers coupled to each of the 3 preconditioners are reported in Table (4).
The tight convergence criteria are applied. GMRES(30) is used with a tolerance selected empirically equal to
1079 so that the linear solution is accurate enough to allow the convergence of PM. Given the same preconditioner
for all the solvers, PM-Cheb is the faster option. As regards the preconditioning of GMRES, SPAI(0.2) is the
most efficient option. Fig. provides details of the behavior of the preconditioners for the case of the simple
PM solver, at the first iteration. ILU(0) and SGS also accelerate the calculations significantly, although the gain
is smaller. For the analysis of the residual error with outer/Newton iterations, the example of the three versions
of PM using ILU(0) is depicted in Fig. (3a). The decrease of the residual error is very slow for the free PM,
while PM-JFNK converges rapidly. However PM-JFNK requires a high computational time because of its two
outer/inner iteration levels (Section4.2.3). Fig. emphasizes this aspect, showing how the cost of each Newton
iteration is sufficiently high to make PM-JFNK slower than PM-Cheb.

5.1.2. Neutron noise problem

After the criticality calculation, the neutron noise solution is obtained with the same 301x301 mesh. Two
versions of the solver for the linear system of Eq. are tested. They rely on GMRES preconditioned with SGS
and ILU(0), respectively. The comparison between the neutron noise predicted by GMRES together with ILU(0)
and the analytical solution shows a large discrepancy close to the location of the neutron noise source, because of
the coarse mesh (see Fig. (d))). More specifically, the maximum relative difference in the amplitude of the fast and
thermal neutron noise is close to 25% and 12%, respectively. Regarding the phase, the difference is up to 10% in
both the cases of fast and thermal noise. Therefore, a finer mesh is selected for the criticality and noise calculations.
The new mesh has 903 X903 nodes, being the nodes 9 times smaller than the previous ones. This corresponds to a
system of equations with 2NV = 1,268,658 (i.e. a factor of 9 larger than the coarser one). The improvement in the
prediction of the neutron noise is shown in Fig. (5). The new mesh reproduces more satisfactorily the sharp shape
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Figure 1: Comparison of the PI-JFNK (SPAI(0.2)) coarse-mesh numerical solution with the analytical solution for the 2-D one-region
criticality problem.
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Table 4: Comparison of different criticality solvers for the 2-D test case with tight convergence criteria.

Solver Precondit. Newton (Krylov) iter. Outer iter. Inner iter. Time (s)
PM SGS - 346 19318 416
PM ILU(0) - 346 16773 203
PM SPAI(0.2) - 346 15580 193

PM-Cheb SGS - 66 3781 102
PM-Cheb ILU(0) - 66 3270 55
PM-Cheb SPAI(0.2) - 66 3028 49
PM-JFNK SGS 13 (74) 114 6522 162
PM-JFNK ILU(0) 13 (72) 112 5548 101
PM-JFNK SPAI(0.2) 13 (72) 112 5133 73

of the neutron noise distribution near the location of the noise source. The differences in the amplitude of the fast
and thermal neutron noise are reduced to less than 12% and 4.5%. Similarly, the differences in phase decrease, i.e.
being less than 2.5%. The findings of this paragraph suggest that the computation of neutron noise requires a finer
mesh than the one of the static neutron flux, in the vicinity of the noise source.

The numerical performance of the methods is shown in Fig. (6). ILU(0) leads to a faster convergence of
GMRES, which is obtained in 80 min. In the case of the 903 x903 mesh and tight convergence criteria, the
criticality calculation using PM-Cheb with ILU(0) takes 37 minutes. In other words, the solution of the single
neutron noise linear system is more time-consuming than the solution of the sequence of linear systems generated
from the PM iteration. In fact, the linear systems of PM needs significantly less GMRES iterations compared to
the noise problem. This finding is investigated in the next section.

5.2. 1-D one-region reactor core: GMRES applied to criticality and neutron noise calculations

As mentioned above, the linear systems in the criticality problem need less GMRES iterations than the one
associated with the neutron noise calculation. Then the spectral properties of A..;; are expected to better favor
convergence as compared to the spectral properties of A,,;s.. The condition number of the matrix A..;; of the
2-D problem is estimated as 4.4697 x 103, whereas the one of the matrix A, as 1.7663 x 10° confirming the
hypothesis. The large difference is a first explanation, and indicates that GMRES coupled with the same type of
preconditioner cannot solve both the criticality and the neutron noise problem with the same effort.

The next step is to study the eigenvalue distribution of the preconditioned A.,.;; and A,,,;s using ILU, as an
example. For this purpose, a 1-D one-region homogeneous reactor core is considered (Demaziere, 2011c)) so that
the matrices are relatively small and easy to manipulate. The system is an infinite slab with width equal to 2a =
300cm. The homogeneous macroscopic cross-sections and diffusion coefficients are chosen to be representative
of a PWR (Tables (2] & [3)). The noise source is a point-like 1 Hz perturbation of the macroscopic removal cross-
section (2,) located at z = —50cm. A mesh with 301 nodes and Ax =1 cm is used leading to 2 N=602.

The eigenvalue distributions of the criticality matrix A..;; and the noise matrix A,,,;s. both preconditioned
with ILU(0), are shown in Fig. (7). ILU(0) leads the eigenvalues of A.,;; to concentrate close to 1, which is the
desired situation. On the other hand, the eigenvalues of A,,,;.. are spread away from unity. This is the reason for
the poorer behavior of GMRES when applied to the computation of neutron noise.

In order to have a closer distribution of the eigenvalues, a more accurate and denser ILU preconditioner is
investigated. Therefore the ILU(0) is compared with another version of ILU where the fill-in is controlled with
a drop tolerance, namely the Crout version of ILU (denoted as ILUC). The following drop tolerances are used:
107°, 1077 and 107!°. Figs (7) shows that the reduction in drop tolerance makes progressively the eigenvalue
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spectrum as compact as the one of the criticality computation. Then, the performance of each preconditioner is
tested on solving the noise problem. As illustrated in Fig. (8) by the variation of the residual error with the number
of iterations, a drop tolerance of 10~!° for ILUC provides a performance that is similar to the ILU(0) in the
criticality calculations. However, such a drop tolerance for ILUC is very tight and not feasible for realistic reactor
applications because it implies very high fill-in. These findings indicate that, although the noise problems studied
in this work are solved with a reasonable computational cost with the selected methods, there is a significant
potential for further improvements.

5.3. 3-D heterogeneous PWR core

A 3-D heterogeneous full core near to criticality with diameter 2R = 344 cm and axial height H = 396.24 is
considered. The noise source is a high-frequency localized absorber of variable strength, i.e. a perturbation in the
macroscopic thermal absorption cross-section (2, 2) with a frequency of 1 kHz. The perturbation is assumed to be
distributed over a volume with dimension 0.8958 cm x 0.8958 cm x 7.62 cm. Two Cartesian meshes are used.
The first mesh, denoted as coarse, has a node size of Ax = Ay =2.6875 cm, and Az =7.62 cm. According to this
resolution, the spatial distribution of the neutron noise source will be approximated over a larger computational
volume. The second mesh, specified as fine, has a smaller node size of Ax = Ay =0.8958 cm and Az = 7.62 cm,
so it allows to define exactly the perturbation in space. The aim is twofold: first, to test the applicability of the
solvers to realistic problems; second, to study the effect of the spatial resolution of the mesh on the modelling of
highly localized neutron noise sources.
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5.3.1. Criticality problem

The three criticality solvers based on PM, PM-Cheb and PM-JFNK are applied. For the solution of the linear
systems of Eq. (IT), GMRES is preconditioned with ILU(0) and SPAI(0.4) for PM-Cheb and PM-JFNK, and only
with SPAI(0.4) in case of non-accelerated PM. For this test case a larger €, is used (0.4 instead of 0.2) in order
to mitigate the computational effort of SPAI’s construction. The spatial domain is discretized with the coarse mesh
since as observed in Section the criticality calculation does not require a very fine mesh. This discretization
leads to a system of 2N = 1,252,328 equations.

The numerical performance of the methods when regular convergence criteria are used is reported in Table (3).
GMRES(30) is applied with a tolerance equal to 10~¢ for PM with SPAI and 10~ for all the other cases. The
GMRES tolerance is selected empirically to provide an inner solution that is accurate enough to the outer iteration.
PM-Cheb with SPAI(0.4) is the faster option. PM-JFNK is slower than PM-Cheb, which agrees with the findings
for the 2-D problem. PM without acceleration is not able to converge in 700 outer iterations, confirming its limited
capability. PM-JFNK with SPAI(0.4) is slower than PM-JFNK with ILU(0) and a possible reason is that SPAI has
about 5 times more non-zero entries than ILU(0). Hence, SPAI implies more expensive matrix-vector operations
which may counterbalance the lower number of inner iterations. The results of the calculations performed with
tight convergence criteria are reported in Table (6). In this set of simulations GMRES(50) is used with a tolerance
chosen to be 107!, The main finding is that PM-JFNK is the only method converging within 700 outer iterations.

5.3.2. Neutron noise problem

After the criticality analysis, the computation of noise follows. In order to study the effect of the mesh,
two computations are performed: the first one estimates the neutron noise according to the coarse mesh with
128x128x52 nodes; and the second one (involving a new criticality calculation) is based on the fine 384x384x52
mesh which leads to 2N = 11,261, 952. As discussed in Section[5.1], the application of GMRES together with the
ILU(0) preconditioner provides satisfactory results for the calculation of the neutron noise in the 2-D reactor core.
Then the same solver with tolerance equal to 10~ is also used for the solution of the neutron noise linear system
in the case of the 3-D realistic reactor core.

Figs & show a comparison of the neutron noise amplitude normalized to the maximum value of the
fine-mesh fast neutron noise. There is a good agreement of the two solutions except in the vicinity of the noise
source where some discrepancy exists. This is more remarkable in the case of the thermal noise where the relative
difference reaches 80%. These results suggest that a fine mesh is required in the close neighborhood of the noise
source. A coarse resolution of the mesh does not allow an accurate modeling of the spatial distribution of the
neutron noise source, and thus leads to a poor evaluation of the spatial variation of the induced noise close to
the perturbation. On the other hand, the noise in the region lying farther can be predicted accurately even with a
coarser mesh. Regarding the phase of the neutron noise, Figs & illustrate that there is not any notable
discrepancy between the two meshes. The computational time of the fine case is 2.6 h for the criticality calculation
and 43 min for the noise problem with no more than 10 Gb of computer memory showing that realistic noise
problems can be solved with a reasonable computational cost.

Table 5: Comparison of different criticality solvers for the 3-D full-core test case with regular convergence criteria.

Method Precondit. Newton (Krylov) iter. Outer iter. Inner iter. Time (s)
PM SPAI(0.4) - 700 (not converg.) 10505 2034
PM-Cheb ILU(0) - 137 1919 313
PM-Cheb SPAI(0.4) - 122 1586 292
PM-JFNK ILU(0) 11 (140) 174 2436 385
PM-JFNK SPAI(0.4) 11 (140) 174 2262 429
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Table 6: Comparison of different criticality solvers for the 3-D full-core test case with tight convergence criteria.

Figure 8: GMRES convergence with progressively higher ILU fill-in for the noise problem, and ILU(0O) for the criticality problem.
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Figure 9: GMRES convergence at the first criticality iteration for the 3-D test case.
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Method Precondit. Newton (Krylov) iter. Outer iter. Inner iter. Time (s)
PM-Cheb ILU(0) - 700 (not converg.) 19620 4313
PM-Cheb SPAI(0.4) - 700 (not converg.) 18200 4232
PM-JFENK ILU(0) 21 (243) 307 8611 1779
PM-JFNK SPAI(0.4) 37 (344) 456 11856 2621
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6. Conclusion

In this paper, a strategy for solving fine mesh realistic neutron noise problems in nuclear reactors is presented.
The neutron noise model relies on the diffusion approximation of the neutron transport equation and requires the
solution of both the criticality (eigenvalue) and neutron noise equations in the frequency domain. The equations
are spatially discretized according to a finite-difference method.

The Power Method is used for the criticality calculation and it is accelerated with two alternatives: the Cheby-
chev polynomials method and a non-linear technique based on the Jacobian-Free Newton Krylov approach. The
restarted GMRES was selected for solving both the linear systems within the iterations of PM and the final linear
system representative of the neutron noise problem, given a prescribed stationary perturbation. To improve the
performance of the algorithm, GMRES was preconditioned with SGS, ILU and SPAI for the criticality part and
with SGS and ILU for the neutron noise part of the problem.

The numerical analysis of the developed solvers is carried out for neutron noise examples in 1-D and 2-D
homogeneous reactor cores and in a 3-D heterogeneous reactor core. A fine spatial discretization of the systems is
applied for an accurate evaluation of the sharp gradients of the neutron noise that arise from the localized character
of the perturbation. From the results of the comparative study, the following conclusions are drawn. For the
criticality calculation, although the scheme that combines PM-Cheb and GMRES preconditioned with SPAI can
be a very efficient option, it does not always converge. In these cases, the solver that consists of PM-JFNK and
GMRES preconditioned with ILU or SPAI seems an advisable option because it can reach a converged solution
even in the case of realistic reactor applications with very tight convergence criteria. This highlights the potential of
JFNK-based techniques for the criticality problem. As regards the choice between ILU and SPAI, the computation
of the first one is very cheap and fast, counterbalancing the somewhat higher reduction in number of iterations that
SPAI achieves.

GMRES with ILU also shows a satisfactory behavior in the calculation of neutron noise. Nevertheless, the
computational effort in the 2-D test-case was more demanding for the noise part of the problem than for the
criticality part. This is due to the structure of the matrices involved. In particular, the eigenvalues of the neutron
noise matrix may be widely spread affecting negatively the performance of GMRES. Such an outcome suggests
that specific preconditioners should be investigated for neutron noise simulations.

Last but not least, it was shown that a fine mesh is required in the vicinity of the noise source to reproduce
properly the strong gradients. In the regions lying farther, a coarser mesh is adequate. Further research on numer-
ical schemes that allow to apply non-uniform meshes, being finer close to the neutron noise source and coarser
elsewhere, could lead to a strong reduction of the computational effort without compromising the accuracy.
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Appendix A. Definition of X<7%, <"t ¢, and ¢,

dyn f
In the neutron noise diffusion Eq. , EEZZ, ¢,, ¢, and qz’);”t are defined as follows. The matrix EEZZ is:
‘ _yerit rw VX2 .0(T) 1 — wp
St (r,w) = ) ST -5 (A.1)
Sro(r) = (Tanolr) + %)
where
, Lw vEf10(r) wf
ygrit =3, = B 0(r) - =L 1- A2
7 0) = Sanolr) + 0 Solr) — L (A2)
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The matrix q&mt

(b;rit(’r', CU) = kegy Lw+A k;ff w+A (A3)
0 0
The matrix ¢, is:
0
b= |7 (A4)
0 ¢oo(r)
The column vector ¢, is:
b, (r) = P10r) (A.5)
—P10(7)

Appendix B. Spatial discretization of the diffusion operator

The spatial discretization scheme for Egs. (8] & [10), is the same as the one used in (Demaziere| 2011a). Ac-
cordingly, a nuclear reactor consists of adjacent volumes or nodes. Given a three-dimensional Cartesian coordi-
nate system, the generic node n can be identified by three indices (I,J,K) which are associated with the x-, y-,
z-directions, respectively. The equations derived in Section are discretized with respect to these nodes and
spatially-averaged on each of them. For the sake of simplicity, the possible dependence on frequency is dropped.
The notation and convention used through this paper are illustrated in Figs & B.12).

Being > a generic macroscopic cross-section and ¢ the scalar neutron flux, the quantities averaged over the
node n, for the g-th energy group, are defined as:

[ 5, (r r)dr
29771 _ Vi an g< )(bg( ) (Bl)
Pgn
1
Ggn = A bg (r)dr (B.2)
nJVy
where V,, represents the volume of the node n. Considering that .J, (r) = —D, (r) V¢, (r), using a spatial

discretization scheme based on finite differences, and assuming that the scalar neutron flux in the middle of the
nodes is equal to the node-averaged scalar neutron flux (box-scheme), the node-averaged streaming terms can be
approximated as:
1 Jyn — . X
e V- [Dy(r) Ve, (r)]dr = — Z T A T Z g,n¢97n + by 0Py nt1 + Cg,n¢g,n—l) (B.3)

Va N=z,y,z N=zx,y,z

In this equation, N represents the direction x, y, or z; and AN is the node width in the R-direction. The subscripts
n-1 and n+1 are related to the nodes on the two sides of the node n along one of the R-directions (see Fig. (B.12))).
The surface averaged net current J, ,, , is defined as:

1 AS/2 Ap/Q
I = / / ) - nLddgp (B.4)
” AT Ap —AS/2 Ap/? g
where n" is the outward normal relative to node n, and 7y represents the position of any point belonging to the

surface normal. The boundary conditions of the system are the Marshak’s ones, which in the case of multigroup
diffusion theory, read as:
1
Jy (ry) - my = §¢g (B.5)
where 7y represents a spatial point on the boundary with ny being the outward normal to the boundary, and qﬁg
represents the scalar neutron flux at the boundary. The derivation of the coupling coefficients is given by Demaziere
(2011b). The expressions of the coupling coefficients a® , b and c;n are summarized in Table 1}

g:m? Vg,

21



Table B.1: Coupling coefficients.

N I R
agm bga” Cg’n
if the node n-1 does not exist
22Dg,”D97’"«+1 1/2 5 o 2Dg,an,n+l 0
(AN)*(Dg,n+Dg n+1) ANJr% (AN)2(Dg,n+Dg,n+1)
if both nodes n-1 and n+1 exist
2Dg,n—1Dg,n + 2Dg,nDg,n+1 _ ZZD!L”ng-H _ 22ng—1Dg,n
(AR)*(Dgn—1+Dgn) ' (AR)*(Dgn+Dg,ni1) (AR)*(Dg,n+Dg,nt1) (AR)*(Dg,n—1+Dg,n)
if the node n-1 does not exist
22Dga“—1D9,’ﬂ 1/2 . O _ 2Dgn-1Dgn
(AR)*(Dg,n-1+Dg.n) AN-{—EL%};)n (AN)2(Dg,n—1+Dg,n)
',;'.n

- / S
| Ye.n
o — 4 —
e
- node z

J;.:.n n=(1,J,K)

Figure B.11: Principles and conventions used for the spatial discretization of a node n.
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Figure B.12: Generic notations relative to a node n used in the spatial discretization along direction .
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Appendix C. Chebyshev acceleration method

Various alternatives of the Chebyshev method are available for the acceleration of PM. The Chebyshev method
implemented in this work is described in|Hebert| (1985)), and it is based on a two-parameter formula with cyclical
updating of DR. In particular, the two parameters used to control the acceleration procedure, are the initial number
N of free PM iterations, and the number M of accelerated PM iterations per acceleration cycle. The scheme
consists of 3 steps.

In step 1, a set of NV free PM iterations are performed (see Alg. (I))). A DR estimate is calculated at the end of
the [-th PM iteration with the formula:

1/2

FRY FRO

DR(l+1) — ( — ) l )1 (C.l)
(FR(* ) FR"~ ))

where R = &1 — @0 At the end of the N-th iteration the method checks if DR+ > .5. If this condition
is satisfied, the method sets NV* = N and moves to step 2. If not, it sets N = N + 1 and another free PM iteration
is performed.

In step 2, an acceleration cycle is performed including M extrapolated PM iterations:

q)(N*+m+1) _ @(N*+m) + a(m) [R(N*er) + B(m) (q)(N*er) . q)(N*erfl))] (Cz)
where m = 1, ..., M denotes the extrapolated iterations. The extrapolation factors are defined as:
2
1)

alt) = T DR (C.3)
BY =0 (C.4)
o™ = DR(LJLV*H) (Cosfo[izﬂb[m;)V]) (©3)
gm) — <1 B DR(;V*—H)) B a(lm) (C6)
where
v = cosh™* (—DR(?V*H) - 1) (C.7)

DR is estimated at the beginning of each cycle and it is kept constant within the cycle.
In step 3, The DR estimate is updated at the end of the acceleration cycle by applying the error reduction factor
FE and the theoretical error reduction factor £* so that:

(N*+M) (N )\ /2
._ ((FR ,FR )

(FR(N*+1)7FR(N*+1)) (C8)
and .
. 9 _ DR(N*—H) -
In Eq. (C.9), C/—1 denotes the Chebyshev polynomial of degree M — 1:
Chr—1 = cosh[(M — 1)cosh™ ] (C.10)
Hence DR is updated with the formula:
. DR h~'(E/E*
DROHM) — S5 {cosh (COS M( 1/ )) + 1} (C.11)

Finally the method sets N* = N* + M and moves to step 2 in order to start a new acceleration cycle. In this work
each cycle is prolonged doubling the number of iterations since it was noticed that it has a positive effect to the
acceleration of the convergence.
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Nomenclature

6] Delayed neutron fraction

r Vector of spatial coordinates

L Imaginary unit

A Decay constant of delayed neutron precursor
v Neutron speed

w Angular frequency

Neutron flux
Yo  Absorption macroscopic cross-section
>y  Fission macroscopic cross-section
> Removal macroscopic cross-section
25,12 Downscattering macroscopic cross-section
Y521 Upscattering macroscopic cross-section
v Average number of neutrons released per fission
C Delayed neutron precursor density
D Neutron diffusion coefficient
E Neutron energy

kep¢  Effective multiplication factor
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