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ABSTRACT

Neutron noise appears as fluctuations of the neutron field induced by vibrations of fuel el-
ements, control rods or any other mechanical structures in the core, as well as from global
or local fluctuations in the flow, density or void fraction of the coolant. Neutron noise
equations are obtained by assuming small perturbations of macroscopic cross-sections
around a steady-state neutron field and by subsequently taking the Fourier transform in
the frequency domain. Recently, a new Monte Carlo algorithm was proposed in order to
solve the transport equation in neutron noise theory with complex-valued weights and a
modified collision operator. This paper presents the new neutron noise solver based on
these methods and implemented in the reference Monte Carlo code TRIPOLI-4® devel-
oped at CEA. We illustrate the capabilities of the solver by considering the noise analysis
of a UOX PWR assembly.
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1. INTRODUCTION

Neutron noise analysis addresses the description of time-dependent flux fluctuations induced by
small global or local perturbations of the macroscopic cross-sections, which may occur in nuclear
reactors due to stochastic density fluctuations of the coolant, to vibrations of fuel elements, control
rods, or any other structures in the core [1]. Neutron noise techniques are adopted in the nuclear
industry for non-invasive general monitoring, control and detection of anomalies in nuclear power
plants [2]. They are also applied to the measurement of the properties of the coolant, such as speed
and void fraction.

The general noise equations are obtained by assuming small perturbations around a steady-state
neutron flux and by subsequently taking the Fourier transform in the frequency domain. The
outcome of the Fourier transform analysis is a fixed-source equation with complex operators for the
perturbed neutron field, which can then be solved so as to predict noise measurements at detector
locations.

Until recently, neutron noise equations have been only solved by analytical techniques [3] and
by resorting to diffusion theory [4,5]. It is therefore necessary to validate these approaches via
Monte Carlo simulation. In 2013, a Monte Carlo algorithm was first proposed in order to solve
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the transport equation in neutron noise theory [6,7]. Such algorithm is a cross-over between fixed-
source and power iteration methods and adopts a weight cancellation technique. This method
yields satisfactory results but has some shortcomings, such as the need of introducing a “binning
procedure” for the weight cancellation: each fissile region must be divided into a large number
of small regions where positive and negative weights are summed up and cancelled. In 2016, a
second Monte Carlo algorithm was proposed [8]: contrary to [6], this method uses the conventional
algorithm for fixed-source problems for all frequencies, does not need any weight cancellation
technique, and is based on a modified collision kernel with a real total cross-section.

In this work, we present the new neutron noise solver based on this second Monte Carlo algorithm
and implemented in the reference Monte Carlo code TRIPOLI-4® developed at CEA [9]. This
paper is organized as follows. In Sec. 2, the general neutron noise theory will be briefly introduced
and the Monte Carlo algorithm implemented in TRIPOLI-4® will be presented. In Sec. 3, we will
verify our Monte Carlo solver by comparison with some analytical solutions. In Sec. 4, we will
illustrate the capabilities of the proposed Monte Carlo solver by performing the analysis of neutron
noise for a standard UOX PWR assembly. Conclusions will be drawn in Sec. 5.

2. DESCRIPTION OF THE NEW TRIPOLI-4® NEUTRON NOISE SOLVER
2.1. Neutron noise theory

The general noise equations are obtained by assuming small perturbations ¥(r, Q, E, t) = ¥y(r, Q, E)+
oY(r, Q, E,t) (which allows for a linear theory) around a steady-state neutron flux ¥y and by sub-
sequently taking the Fourier transform in the frequency domain. The analysis is performed based
on the neutron kinetic equations, including the coupling with neutron precursors. The outcome of
the Fourier transform analysis is a fixed-source equation with complex operators for the perturbed
neutron field 6'¥, which can then be solved so as to predict noise measurements at detector loca-
tions. For each frequency, the perturbed neutron flux is a complex function having an amplitude
and a phase. Imposing a periodic perturbation of the kinetic operator, the noise equation reads [1]:
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where i is the imaginary unit, w = 2 f the angular frequency, and
/13 - l/lja)

/l§+w2

v (E) = [ )vj;(E) )

for the precursor family j; all other notations are standard. Thus, because of the delayed neutrons,
the production operator depends on the frequency w. Equation (1) can be conceptually split into
a system of two equations for the real and imaginary part of 6'¥. The two equations are formally
coupled by two terms: iw/v and the modified delayed production operator including the complex
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multiplicity viw(E). The noise source S is defined by:

S(r,Q, E,w) = =65, E, 0)¥(r, Q, E) + f f 55,(r,Q - Q. E - E,w)¥(r,Q, E'dE'dQ
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where 0Z,(r, E, w) is the Fourier transform of the perturbed term of the macroscopic cross-section
Y, E 1) = Xo.(r, E) + 0Z,(r, E, 1) with X , the static macroscopic cross-section.

2.2. The Monte Carlo algorithm implemented in TRIPOLI-4®

We briefly sketch the Monte Carlo algorithm that we have chosen to implement in the refer-
ence Monte Carlo code TRIPOLI-4®; a thorough description is given in [8]. Similarly as in [6],
our method is based on the simulation of particles carrying complex statistical weights w(w) =
{wg (w), wg(w)}, where the signs of the real and imaginary parts of particle weights can be positive
or negative. In [6], the complex cross section Xy + iw/v on the left-hand-side of Eq. (1) is dealt with
explicitly by modifying the particle weights during flights. For our algorithm, we choose instead
to work with a real cross section and we modify the collision kernel accordingly. This is achieved
by following the strategy discussed in [10]: we add a term nw/vdY, i being a real constant having
the same sign as w, to both sides of Eq. (1), and we move the term iw/v6'¥ to the right-hand-side.
Then, the equation becomes:

(Q-V+20(r,E)+n )5‘I’(rQEa)) Tn © SB(r, Q. E, w) + (... )

In this case, we work with a real modified total cross-section 2y(r, E, w) = Zo(r, E) + Z,(E) > 0
where ,(E) = nw/v > 0. Hence, flight lengths are sampled as in standard Monte Carlo calcula-
tions, provided that X is used instead of Z.

Because of the structure of Eq. (4), the collision operator is now different from that of the reg-
ular Boltzmann equation, and we have to treat two types of particle productions: regular fission
with probability X // %, and a special w-production associated to a copy operator with probability
Y., /%o. We treat the regular fission as customary, i.e., the number of prompt or delayed fission neu-
trons is determined as Int(v,Xo ¢/ PN + &) where Int(.) denotes the integer part, £ is a uniform random
number, and ¢ = p, d. Because of the factor viw appearing in the delayed fission production term,
the weight w, of each new delayed neutron created by fission is modified to:

2 .
w (A —idjw 5)
wy = —|————|,
1Tk A+ w?
where w is the particle weight before the fission event. The term representing the w-fission pro-
duction consists of a copy of the incident neutron with a new weight w,, given by:

n—i
-

(6)
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Implicit capture (with forced fission) and Russian roulette can be used as in standard Monte Carlo
method. Similarly as in [6], Russian roulette is applied separately to the absolute value of the real
and imaginary parts of the particle weight: the particle is killed only if the real and the imaginary
parts are both killed.

As described in [8], at low and very high frequencies, i.e., far from the plateau region of the zero-
power reactor transfer function of the system (typically below 0.01 Hz and above 1 kHz), Monte
Carlo methods for noise propagation lead to the production of a very large number of particles
and the calculation time explodes. To perform simulations at low and very high frequencies, in [6]
a weight cancellation technique is applied; the method proposed [8] does not need any weight
cancellation technique and turns out to be rather robust. For the frequency region of interest for
most applications in reactor noise analysis, i.e., approximatively between 0.01 Hz and 100 Hz, the
algorithm described above converges safely with 7 = 1. Extreme cases beyond this frequency re-
gion have been also tested and calculations converge by suppressing implicit capture (and possibly
tuning the n value as well at very high frequencies).

To summarize, our method (i) uses the conventional algorithm for fixed-source problems for all
frequencies, (i1) does not need any weight cancellation technique, and (iii) is based on a real total
cross-section and a modified collision kernel. The major advantage of this algorithm is that it in-
troduces minimal modifications to standard Monte Carlo algorithms for particle transport (the key
modification concerning the weight modification at delayed fission events and the special “copy”
event) and can thus be implemented in continuous-energy production Monte Carlo codes such as
TRIPOLI-4®, Scores such as flux and reaction rates over volumes and meshes have been extended
in order to decompose the complex Monte Carlo estimators into modulus and phase, or equiva-
lently real and imaginary part.

2.2.1. The noise source sampling method

In the general case, the noise source S is a complex function depending on the stationary flux
¥, and the sign of its real and imaginary part can thus be space and/or energy-dependent. In
order to sample arbitrary noise sources by Monte Carlo methods, we implemented in TRIPOLI-
4® the following method: a standard power iteration is first run in order to determine ¥, exactly.
Convergence is achieved after a sufficient number of inactive cycles; then, each term in Eq. (3) is
sampled by weighting the ‘noise particles’ generated by each component of S by the stationary
collision density associated to W,. For instance, for the prompt fission term we would have

IXp(E) ff v (E )6Zf(r E, w )Zo,f(r,E/)‘I’o(r,Q/,E')dE,dQ” 7
2o (r, E)

which means that at fission events we would instantiate v, /k ‘noise particles’ with spectrum y,(E)
and with a statistical weight 62 /(r, E’, w)/Zo ¢(r, E”) depending on the specific perturbation. By
analogy with the strategy discussed in [11], a complete power iteration is performed once in the
first batch: during the final cycle noise source particles are sampled so that the noise simulation
can begin, while the generated fission neutrons are transferred to the second batch. This latter
runs a few additional inactive cycles in order to ensure reasonable decorrelation between cycles
before sampling the noise source for the second replica. The third batch gets the fission neutrons
generated by the second one, and so on. In a parallel run, each processor would apply this strategy.
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The proposed simulation scheme is illustrated in Fig. 1. The critical eigenvalue k that is required
for the noise equations can be estimated during the first critical calculation, or be obtained from a
separate calculation.

Bach 1 f [ T T 1 1 [T 111111148 |
Batch 2 § 11 R o |

Batch 3 t L1k

Batch M P b

O Critical simulation + Fission neutrons —» Noise source particles transfer

Noise simulation ¢ Sampling of noise source —» Fission neutrons transfer
particles

Figure 1: Neutron noise TRIPOLI-4® simulation process with M batches.
3. NUMERICAL VERIFICATIONS OF TRIPOLI-4® NEUTRON NOISE SOLVER

In this section, we briefly discuss some numerical verifications of the TRIPOLI-4® neutron noise
solver against analytical solutions for an infinite homogeneous medium in the case of single-speed
and continuous-energy problems, for an infinitely homogeneous cylindrical core, and for one-
dimensional homogeneous core surrounded by a reflector. All Monte Carlo results (track length
estimator) are plotted with their 1-o error bars (barely visible in the figures).

3.1. Infinite homogeneous medium

For an infinite homogeneous medium in the case of single-speed problem, the results of the
TRIPOLI-4® neutron noise solver are verified against analytical results (see [6] for the problem
description and the analytical solutions). Here, the noise source is defined by § = —1 + i at each
frequency. Results are shown in Fig. 2: an excellent agreement is found.
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(a) Modulus of the neutron noise. (b) Phase of the neutron noise.

Figure 2: Modulus and phase of 6'¥(w) versus frequency in an infinite homogeneous
medium (single-speed case).
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For an infinite homogeneous medium in the case of continuous-energy problem, the result of our
neutron noise solver is again verified against analytical results (see Fig. 3). Here, the noise source
is defined by S = 2 — 3i between 1 and 2 MeV and § = —-0.75 + 5i between 0.0001 and 0.0005
MeV at 3 Hz. For the sake of simplicity, for our tests we have modelled scattering by using a
Maxwell spectrum and fission by a Watt spectrum. This example illustrates the capability of the
neutron noise solver to correctly simulate continuous-energy problems.
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(a) Modulus of the neutron noise. (b) Phase of the neutron noise.

Figure 3: Modulus and phase of 6'¥(w) versus energy at 3 Hz in an infinite homogeneous
medium (continuous-energy case).

3.2. Infinitely-long homogeneous cylindrical core

We have further probed the noise solver in the case of an infinitely homogeneous cylindrical core
with two energy groups (see [6] for all details of the problem data and analytical results in diffusion
theory). Here, the noise source is defined by S = —1 for the thermal group at 1 Hz and at the center
of the core. Results are shown in Fig. 4: some differences are observed at the center of the core, due
to the expected slight discrepancies between solutions derived in diffusion theory and our transport
results. Overall, the agreement is very satisfactory.
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(a) Modulus of the fast neutron noise. (b) Modulus of the thermal neutron noise.

Figure 4: Modulus of 6¥(w) versus the radial position from the core center at 1 Hz in an
infinitely-long homogeneous cylindrical core.
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3.3. One-dimensional homogeneous core surrounded by a reflector

The final verification test concerns a one-dimensional homogeneous core surrounded by a reflector
with two energy groups (see [4] for all details of the problem data and analytical results). Results
are shown in Fig. 5. Here, the noise source is defined by S = —3 — 0.5/ for the fast group and
S = —1.2 + 2i for the thermal group at 1Hz and at the core/reflector interface. Again, an excellent
agreement is found with respect to exact results.
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Figure 5: Modulus of 6'¥(w) versus position at 1 Hz in an one-dimensional homogeneous
core surrounded by a reflector.

4. ANALYSIS OF NEUTRON NOISE IN A UOX PWR ASSEMBLY

We conclude our analysis by illustrating the capabilities of the TRIPOLI-4® neutron noise solver
on a more realistic configuration, a standard UOX fuel assembly (see Fig. 6). We will first compare
the induced neutron noise to the standard zero-power transfer function for the case of a simple
delta-like noise source; then, we will consider the case of a vibration-induced noise source.
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Figure 6: Top view of the UOX assembly.

4.1. An example of a simple noise source

We impose a simple isotropic noise source S at position ry within the fuel assembly and energy
E,, with a given frequency wy. We compare the induced neutron noise 6¥(w) integrated over the
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whole assembly to the zero-power transfer function Gy(w) = 1/ (ia) (Aeff + iwﬂfjeﬁ )), corresponding

to the limit case of point-kinetics, i.e., a system responding to the perturbation insensitive of the
space or energy effects. The position r( of the noise source varies from the center to the top right
corner of the system, occupying the center of the fuel rods (positions RO, R4 and RS in Fig. 6).
We tested different values for the energy E, of the noise source, i.e. 1 MeV, 1 KeV and 0.025 eV.
Here for the sake of conciseness we show the results for £, = 1 keV. The angular frequency wy
takes values that are located in the ‘plateau’ region of Gy: physical perturbations in experimental
and commercial reactors generally take place approximatively between wy,, = deg = 0.1 Hz and
Whigh = Aefi + Beri/ Aer = a few tens of Hz.

In Fig. 7, we show the comparison between the modulus and the phase of 0¥ (w) and G as a
function of the noise source position (RO, R4 and RS, see Fig. 6) at E; = 1 keV. As expected, we
note that the computed neutron noise 6'¥(w) slightly deviates from the point kinetics behaviour. As
an illustration, Fig. 8 presents the spatially-resolved modulus and phase of 6'F(w) for the case of a
noise source at position R4, energy 1 keV and frequency 30 Hz.
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(a) Modulus of neutron noise (A.U.). (b) Phase of neutron noise (degrees).

Figure 7: Comparison between G, and 6¥(w) (modulus and phase) at 1 keV versus noise
source position (R0, R4 and R8).

(a) Modulus of neutron noise (A.U.). (b) Phase of neutron noise (degrees).

Figure 8: Modulus and phase of 6'¥(w) induced by a simple isotropic noise source at position
R4, energy 1 keV and frequency 30 Hz.
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4.2. An example of a vibration-induced noise source

We consider next the spatially-resolved modulus and phase of 6'¥(w) induced by a fuel pin vibra-
tion along x-axis at 1 Hz with an amplitude of 0.1 cm (the position of the perturbed fuel pin is
detailed in Fig. 6). The sinusoidal vibration model has been described in [12]. Results are shown
in Fig. 9 for a noise source corresponding to a critical state ¥, computed as detailed above.

10

15

0 20
* {cm) * (em) =

(a) Modulus of neutron noise (A.U.). (b) Phase of neutron noise (degrees).

Figure 9: Modulus and phase of '¥(w) induced by a fuel pin vibration along x-axis at 1 Hz
with an amplitude of 0.1 cm.

5. CONCLUSIONS

In this paper, we have presented the new TRIPOLI-4® solver for the neutron noise analysis in the
frequency domain. Future work will concern the comparison with neutron noise simulations in the
time and frequency domain performed with APOLLO3®, the multi-purpose deterministic transport
code under development at CEA [13,14], and the validation of the developed solvers based on the
new experimental campaigns carried out in the framework of the COLIBRI experimental program
at the Crocus reactor (operated by EPFL, Lausanne, Switzerland) [15].
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