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ABSTRACT
A critical issue for the safe operation of nuclear power plants
is to quickly and accurately detect possible anomalies and
perturbations in the reactor. Defects in operation are prin-
cipally identified through changes in the neutron flux, as
captured by detectors placed at various points inside and
outside of the core. While wavelet-based analysis of the
measured signals has been thoroughly used for anomaly de-
tection, it has yet to be coupled with deep learning ap-
proaches. To this end, this work presents a novel technique
for anomaly detection on nuclear reactor signals through the
combined use of wavelet-based analysis and convolutional
neural networks. In essence, the wavelet transform is ap-
plied to the signals and the corresponding scaleograms are
produced, which are subsequently used to train a convolu-
tional neural network that detects possible perturbations in
the reactor core. The overall methodology is experimen-
tally validated on a set of simulated nuclear reactor signals
generated by a well-established relevant tool. The obtained
results indicate that the trained network achieves high lev-
els of accuracy in failure detection, while at the same time
being robust to noise.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICAAI 2019 The 3rd International Conference on Advances in Artificial
Intelligence, October 26–28, 2019, Istanbul, Turkey
c© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-7253-4/19/10. . . 15.00

DOI: 10.1145/3369114.3369121

CCS Concepts
•Computing methodologies → Anomaly detection;
Supervised learning by classification; •Applied comput-
ing → Physics; Engineering;

Keywords
Anomaly Detection; Nuclear Power Plants; Signal Process-
ing; Deep Learning; Convolutional Neural Networks; Wavelet
Transformation; Scaleograms

1. INTRODUCTION
Anomaly detection is a very active research area with ap-

plications in a large variety of domains, such as fault diag-
nosis in factory systems, health monitoring, ecosystem dis-
turbances, intrusions in network data and event detection in
sensor networks [10]. In all of the aforementioned cases, the
objective is to identify samples or events exhibiting behavior
that deviates from what it could be considered as “normal”
or “ordinary” within each domain. Recently, an increase in
anomaly detection methodologies based on machine learning
techniques has also been witnessed [6].

This work focuses on anomaly detection on Nuclear Power
Plant (NPP) data. Timely detection of incipient faults and
condition monitoring are crucial for operational safety in
NPPs, as well as for improving their performance. For ex-
ample, a drift in steam generator feedwater flow sensors can
result in reactor power output reduction by as much as 3%
[9]. These faults can be caused by either single or multiple
component defects. The task of detecting the faulty com-
ponents can be quite difficult, because the anomaly must
be identified and located in a timely manner in order to be
handled [13]. However, changes in reactors usually occur
at slow paces and by the time the anomaly is clearly seen,
it may be too late to tackle the problem. Therefore, it is



more than necessary to develop systems that automatically
monitor the state and condition of nuclear reactors.

One of the principal ways of assessing a nuclear reactor’s
state is inspecting the level of the neutron noise, which can
be defined as the neutron flux fluctuations around a mean
value [29]. Changes in neutron noise level inside the core are
related to processes within the reactor, such as the thermo-
hydraulic oscillations or mechanical and fuel assembly vibra-
tions. The induced neutron noise can be measured by two
types of sensors; those located inside the core (in-core) and
those outside (ex-core).

More specifically, the type of nuclear reactors examined in
this work are the KWU pre-Konvoi Pressurized Water Re-
actors (PWRs) [36], designed by Siemens AG. KWU PWRs
have been exhibiting high values of neutron noise since their
beginning [22]. However, this is not alarming because it has
not resulted in problems related to the high flux fluctuations.
It is important, though, to monitor these values frequently
for safety reasons. Safety authorities set maximum thresh-
olds of neutron noise just to ensure that no accidents will
happen. Some research studies in the past opted to use spe-
cial filters to prevent limitations of the system, due to the
high values of neutron noise exceeding the defined thresholds
[16].

Therefore, the application of intelligent techniques to mon-
itor the reactor’s state are not only expected to be benefi-
cial to the safety of the NPP but are also important for
the performance of the whole system [31]. In Section 2 be-
low, related work on anomaly detection in NPP data and
machine learning techniques are presented. The proposed
methodology is discussed in Section 3 and the experimental
framework is described in Section 4. Finally, the results are
outlined in Section 5 and the paper concludes in Section 6.

2. RELATED WORK
Various studies have been performed on anomaly detec-

tion in NPP data. Specifically, many fault detection and di-
agnosis (FDD) applications on NPPs are presented in [26].
The FDD methods are divided in model-based and model-free
ones and also according to how they are applied to differ-
ent NPP problems and intricacies. A real-time data-driven
tool that uses symbolic dynamic filtering (SDF) to extract
meaningful features from time series is introduced in [18]
and compared to principal component analysis (PCA). SDF
constructs a probabilistic finite state automaton whose out-
put (a lower-dimensional vector) is used to train a classi-
fier. In the aforementioned work, it was demonstrated that
SDF-based classifiers exhibited a lower test error rate than
PCA-based ones.

Support vector data description (SVDD) [35] has also been
employed in NPP data in an effort to identify outliers on a
dataset consisting of signals of neutron flow in a nuclear re-
actor channel [27]. Another approach based on deep learning
(DL) techniques [23] that localize the specific point in the
reactor core that a perturbation originates from, has been
presented in [8]. In this case, the signals are transformed
to the frequency domain and subsequently provided in slices
to a convolutional neural network (CNN) [23], yielding very
good results. Additionally, a clustering technique and a de-
noising method (using a denoising autoencoder) have been
proposed to tackle this problem [8].

In the current work, anomalies in the reactor core (mostly
neutron flux perturbations) are identified through the com-

bined use of wavelet-based scaleograms [33] (a form of spec-
trograms) and DL methodologies. These two techniques
have also been used together in other domains as well. For
example, complex spectrograms have been used to train a
speech-enhancement CNN model, which denoises the input
signals [14]. In the field of acoustic scene classification, a
DL approach based on scaleograms and spectrograms paired
with a pretrained CNN and a generalized regression neural
network has been proposed in [30], providing excellent re-
sults in the DCASE 2017 challenge [28]. Besides that, DL
methods have been applied to speech emotion recognition
problems. In [2], a CNN model is trained with spectrograms
from speech signals to recognize emotions, such as anger,
boredom, etc, extracted from the Berlin dataset [7]. Another
methodology of emotion recognition has been presented in
[32], where the speech signal has been split in parts, with
each of them producing a spectrogram. This sequence of
spectrograms has been provided to a convolutional-recurrent
model, constructed by CNNs and bi-directional Long-Short
Term Memory Networks (bi-LSTMs), exhibiting promising
results in clean, as well as noisy conditions. Another DL
technique with convolutional recurrent neural networks for
emotion recognition in multi-channel electroencephalography
data has been implemented in [25], where the signals have
been transformed into spectrograms prior to model training.

3. THE PROPOSED METHODOLOGY
The main objective of the proposed methodology is to be

able to identify the driving perturbation from neutron flux
signals captured by the in-core and ex-core sensors of a nu-
clear reactor. This is achieved through the application of the
discrete wavelet transform (DWT) [12] to the signals and the
generation of the corresponding wavelet scaleograms. Sub-
sequently, those scaleograms are provided to a CNN that
learns to classify them to the different perturbation types.

3.1 Discrete Wavelet Transform
The DWT is a technique that decomposes a given signal

to a set of wavelet basis functions. These, in contrast to
the sinusoidal functions of the Discrete Fourier transform
(DFT) [5] are spatially localized (i.e.being non-zero for only
over a part of their length). The wavelet functions are di-
lated, scaled and translated versions of an archetype func-
tion called the mother wavelet [12].

One key advantage of DWT over DFT is the property
of temporal resolution, i.e. its ability to capture both fre-
quency and location information. However, in contrast to
DFT, DWT refers to a set of different transformations with
respect to the chosen mother wavelet. In other words, differ-
ent mother wavelets, decompose the signal in different ways,
so before performing a wavelet analysis, the optimal mother
wavelet should be identified.

3.1.1 Mother Wavelet Selection
In principle, the optimal mother wavelet should be one

whose shape “matches” that of the signal. If this is the
case, then large wavelet coefficients will appear at just a few
levels (associated with the desired signal), while noise will
be evenly spread among all levels [24].

The optimal mother wavelet may be determined according
to several criteria; however, the most popular ones are cross-
correlation (a statistical metric) [24] and energy-to-entropy
(an information theoretical metric) [3, 19]. The former aims



at measuring the similarity between the mother wavelet and
the signal. The cross-correlation coefficient γ between sig-
nals X and Y , is calculated according to Equation 1 below:

γ(X,Y ) =

∑
(X − X̄)(Y − Ȳ )√∑

(X − X̄)2
∑

(Y − Ȳ )2
(1)

where X̄, Ȳ are the mean values of X,Y respectively.
Energy-to-entropy maximizes the ratio of the decomposed

signal’s energy to its entropy. The energy can be through
of as the amount of information that the signal’s coefficients
carry, while (Shannon’s) entropy is a measure of uncertainty
that produces high values for “noisy” decompositions [3].
This criterion aims at maximizing the amount of energy the
wavelet can extract from the signal, while minimizing the
entropy of the decomposed signal [19]. The energy (Equa-
tion 2) and entropy (Equation 3) of the decomposed signal
s are calculated as follows

Energy (s) =

√√√√ 1

N

N∑
i=1

s2i (2)

Entropy (s) =
∑
i

(
s2i · log

(
s2i
))

(3)

where si are the decomposed signal’s coefficients. The energy-
to-entropy ratio is given in Equation 4

ζ (s) =
Energy (s)

Entropy (s)
(4)

An example energy-to-entropy analysis of a signal is de-
picted in Figure 1, showing the value of the ratio for each
mother wavelet function. The wavelet with the highest energy-
to-entropy ratio is the optimal one (in this case, Biorthogonal
5.5 ).

Figure 1: Energy-to-entropy criterion for various
mother wavelet functions for a given signal.

3.1.2 Scaleograms
A scaleogram [33] is a type of a two-dimensional heatmap

that depicts the spectrum of DWT frequencies as they vary
through time. It is very useful for visualizing the strength of
a signal at each frequency and for each time step. In contrast
to spectrograms produced by DFT, which depict time and
frequency on the x and y axis respectively, the frequency
bands of a scaleogram (Figure 3) have uniform height, which
makes much more sense in the context of DWT, because the
y-axis now represents the levels of the decomposition.

A sample signal with four distinct states of equal length in
time is presented in Figure 2. More specifically, the second

and fourth states are the result of superimposing three dis-
tinct single-frequency signals, the first of two and the third
of only one.

Figure 2: Sample signal with 4 distinct states.

The signal of Figure 2 has been decomposed using DWT
with a Daubechies 4 mother wavelet and its scaleogram is
displayed on Figure 3.

Figure 3: Scaleogram of the signal of Figure 2, with
10 levels of decomposition.

The different frequencies of the sample signal of Figure 2
become apparent in Figure 3. The highest frequency, which
is present only in the second and fourth parts of the sig-
nal, can be seen at level 10 (i.e. the bottom level) of the
scaleogram. Likewise, a frequency present only in the first
two and the fourth parts of the signal can be viewed at level
6. Finally, the underlying frequency which is present in the
whole duration of the signal can be seen at level 4.



3.2 Convolutional Neural Networks
CNNs [33] are a category of neural networks, consisting

of convolutional, pooling and fully connected layers, that
are most commonly used in image processing. Their main
strengths are weight sharing and sparse connectivity, which
significantly reduce the number of parameters per layer and
allow for the creation of very deep networks. CNNs are
considered to be the state-of-the-art for most image-related
tasks and have been applied to many domains [17, 21].

Due to the simple nature of the scaleograms used in the
subsequent experiments, a very deep CNN was not deemed
necessary. Instead, a simpler CNN architecture of a depth
of 6 layers has been selected. The network is described in
more detail in Section 4.3.

4. EXPERIMENTAL FRAMEWORK
The purpose of the conducted experiments has been two-

fold; (i) to investigate whether scaleograms could be used
for anomaly detection in NPP data and (ii) to identify the
optimal time window that should be used when perform-
ing this type of analysis. Intuitively, smaller windows would
segment the input signal into more parts and consequently
produce a larger training set for the CNN. However, seg-
menting the signal too much could lead to the perturbation
not being captured, thereby affecting performance.

4.1 Data simulation and preprocessing
The proposed methodology has been evaluated on data

generated by the SIMULATE-3K tool [11, 15], modelling
some basic types of perturbations occurring in nuclear reac-
tors. This tool has been built to simulate the steady state
operation of a PWR under specific scenarios. These included
phenomena such as fuel assembly vibrations (both single and
in groups), as well as coolant flow and temperature oscilla-
tions. Each of these conditions has been simulated for dif-
ferent frequencies and amplitudes.

Specifically, the scenarios have been grouped in four main
categories:

1. Fuel Assembly Vibrations, describing a vibration
of a single fuel assembly in one direction. Four dis-
tinct vibrating fuel assemblies have been simulated,
for different conditions (i.e. type of vibration and am-
plitude). A total of 32 scenarios have been considered
in this process.

2. Cluster of Fuel Assemblies synchronously vi-
brating, in the center of the reactor. 12 scenarios
with different combinations of vibration frequencies
and amplitudes have been examined in this category.

3. Coolant Flow Oscillations, simulating random os-
cillations in the flow of the coolant by up to ±1%.

4. Coolant Temperature Oscillations, simulating ran-
dom oscillations in the temperature of the coolant by
up to ±1◦C.

Each simulated scenario has been “captured” by 48 in-
core and 8 ex-core detectors. Depending on the scenario,
the signals have a length of either 35secs or 100secs and
a sampling rate of 100Hz. The in-core sensors are located
at 8 different axial locations, each taking measurements at
6 different heights [4]. The ex-core sensors, on the other

hand, are placed in 4 locations at 2 different levels. It has
been reported that due to their spatial symmetry (the 4 ex-
core sensors are placed at an angle of 90◦ from one another)
some vibrations may not be detected at all [1]. It is for this
reason that in-core measurements should also be taken into
account.

Despite the fact that the examined signals are simulated,
an initial preprocessing step is still necessary. Firstly, possi-
ble trends in the signals have to be removed, using detrend-
ing techniques [29]. Secondly, in an effort to construct a
unified evaluation procedure, the signals have been resam-
pled so as to have an equal length. Finally, the mother
wavelet that best describes the data has been computed
for each scenario (Section 3.1.1), along with its respective
hyper-parameters.

4.2 Evaluation
The employed evaluation protocol has been k-fold cross-

validation on the time dimension of each signal (Figure 4)
and for k ∈ {2, 4, 8}. That is, for each iteration of the pro-
tocol, the total length of the signal is split into k parts, k−1
of which are used for training and one for testing. It should
also be noted that the selection of the testing part has been
consistent for all signals in a given run (e.g. the nth part).
Subsequently, a scaleogram has been extracted from each of
the k parts (Section 3.1.2). Due to the imbalanced number
of samples between the classes, both the training and eval-
uation of the model have been weighted. The final accuracy
reported has been the weighted average of the k-folds.

Figure 4: A preprocessed (i.e. detrended and re-
sampled) signal, partitioned into k = 8 parts.

4.3 Model Selection
Since the produced scaleograms are rather simple (i.e. not

exhibiting complex patterns), a very deep CNN architecture
has not been considered necessary. After extensive exper-
imentation, a network of 6 layers and around 2.5 million
tunable parameters has been selected (Figure 5).

More specifically, the first convolutional layer has 32 fil-
ters, a kernel of 11×11 and strides of 4×4, while the second
layer has 64 filters and a kernel size of 5×5. After both con-
volutions, max pooling operations are applied with kernels
of 3× 3 and strides of 2× 2. Finally, dropout [34] is applied
with a probability of p = 0.35. The architecture is finalized



Figure 5: The CNN architecture for classifying the
scaleograms.

with two fully-connected (FC) layers, having 256 and 4 neu-
rons, respectively (dropout with p = 0.3 is applied after the
first FC layer).

The Adam optimizer [20] has been used for network train-
ing (initial learning rate of η = 10−4), with cross-entropy
being the selected loss function. As mentioned previously,
the samples have been weighted during training to alleviate
the class imbalance problem.

4.4 Noise Experiments
After assessing the ability of the model to discriminate

between the four classes of Section 4.1, further experiments
have been performed in order to examine the robustness of
the proposed technique to external noise. Specifically, each
input signal has been imputed with white noise of different
strengths, with the derived, “noisy” signals being processed
according the previously outlined pipeline (i.e. detrend-
ing, resampling, splitting into k-folds, decomposing through
DWT, converting into scaleograms and then being used for
CNN training).

A total of 10 different signal-to-noise ratio (SNR) cases
have been examined. The SNR of a signal is defined as the
ratio of the power of the clean signal to that of the noise (i.e.
the ratio of the useful information to the noise), according
to Equation 5 below

SNR =
Psignal

Pnoise
(5)

Signal-to-noise ratios of 106, 105, 104, 103, 102, 10, 1, 10−1,
10−2 and 10−3 have been considered for this experiment; the
higher the SNR value, the “cleaner” the signal. A sample,
noise-imputed input signal is depicted in Figure 6. SNRs
higher than 103 have little effect to the signal, while for
SNR lower than 10, the noise’s presence in the signal is very
significant.

5. RESULTS
Out of the two types of signals discussed previously (in-

core and ex-core), the former are preferable (Section 4.1).
However, the respective detectors are not constantly avail-
able throughout the reactor operation; they are inserted to
the core for a limited amount of time. This is the reason that
both types of sensors have been examined independently.

5.1 Clean signal analysis
The first experiment involves the “clean” signals of the

reactor. For each type of sensor, 3 different values of k are
considered, as discussed in Section 4.2. Their mean accuracy
is summarized on Table 5.1.

As expected, for larger values of k, more input signals are
produced and in turn more scaleograms. Furthermore, even
though in-core sensors clearly outperform the ex-core ones,

Figure 6: Input signal for different signal-to-noise
ratios.

k In-core Ex-core
2 98.04% 83.33%
4 99.63% 83.44%
8 99.85% 93.88%

Table 1: Mean accuracy of each detector type for
different values of k.

the latter remain reliable and can detect the anomalies in
most cases.

5.2 Noise analysis
Table 5.2 displays the results of the noise experiments.

The framework’s overall performance remains unchanged for
noisy signals with high values of SNR (i.e. low noise). For
signals with SNR< 10, the performance starts deteriorating.
From this point onwards, the noise has a strong presence in
the overall signal, making it hard for the network to dis-
criminate between samples. For very low SNR values (i.e.
below 0.1), the signal is dominated by the noise, making it
virtually impossible to classify it without applying denoising
techniques. The aforementioned deterioration is illustrated
in Figure 7. Finally, in-core signals exhibit better perfor-
mance than ex-core ones in this experiment, as well.

6. CONCLUSION



k
2 4 8

SNR In Ex In Ex In Ex
clean 92.80 70.52 99.10 80.47 99.83 82.40

106 92.48 71.15 98.99 81.46 99.80 83.26
105 92.19 68.02 99.13 80.73 99.84 82.94
104 91.46 73.33 98.95 81.15 99.84 82.97
103 92.88 66.56 98.90 80.78 99.81 82.94
102 93.18 67.71 98.74 80.99 99.70 85.05
10 90.68 73.02 98.06 80.78 99.41 82.84
1 85.40 68.44 89.75 77.24 95.96 78.52

10−1 72.36 23.12 73.13 53.85 70.39 57.86
10−2 13.59 4.06 18.94 4.27 16.24 4.51
10−3 4.08 3.33 3.64 4.06 3.64 3.98

Table 2: Weighted accuracy for both in-core and
ex-core sensors, for various signal-to-noise ratios.

Figure 7: Performance dropoff for different signal-
to-noise ratios.

In this work, a framework for detecting anomalies in nu-
clear reactors has been presented. Input signals are pre-
processed and decomposed through DWT, in order to pro-
duce the respective scaleograms. Then, those scaleograms
are treated as images that are used to train a CNN which
ultimately identifies possible anomalies in the reactor. This
procedure has been tested on simulated data for a PWR that
contained four different types of perturbations. Both in-core
and ex-core signals have been examined and the drawbacks
of each have been discussed. The experimental results prove
that the proposed methodology is capable of distinguishing
between different anomalies in both types of signals and that
it is also robust to noise.

Future research directions include the evaluation of the
presented framework on actual measurements from PWRs,
incorporating more types of perturbations in the model and
assessing its performance on combinations of different per-
turbations occurring simultaneously.
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