Challenges in signal processing in complex applications

Lenka Lhotska, Vaclav Gerla
Czech Institute of Informatics, Robotics and Cybernetics,
CTU in Prague, Czech Republic

Content

- Biomedical signals and their properties
- Multilevel analysis
- Classification
- Visualization
- Conclusion

Real clinical signals (instead of introduction) of the control of

Multilevel Analysis Procedure

- Filtering
- Artefact detection/removing
- Signal segmentation
- Feature extraction
 - statistical features
 - spectral/coherence analysis
 - wavelet transform
- Classification
 - linear models
 - neural networks
 - mixture models
 - fuzzy approches
 - ensemble learning

Classification of Epileptic Patterns

RAW EEG, 10 seconds

Black color: normal EEG activity, Red color: epileptic activity

Detected epileptic activity, 2 hours

Comatose EEG data analysis

Color coding of comatose classes:

Long-term trends estimation:

Sleep analysis

PSG signals:

Hypnogram:

Blume et al., 2015

Spectral analysis of sleep EEG

classification made by neurologist

Spectrogram is computed for one EEG channel (Fz-Cz)

classification made by semi-automated method

2D/3D spectrograms

STFT vers. CWT (sleep EEG data)

These approaches may facilitate the visual evaluation of long-term recordings, or allow effective analysis of an unknown EEG signal structure.

Automatic detection of artifacts (Sleep data)

Feature profile (Neonatal data)

90-minute sleep study of the parameters of a healthy full-term infant. The figure shows clearly that the features are correlated with the neurologist's classication.

- A) Sleep profile, as evaluated by an experienced physician.
- B) FFT ABS DELTA for all EEG channels.
- C) Heart rate computed from the windowed ECG signal.
- D) Regularity of respiration.
- E) Standard deviation of the windowed EMG signal normalized to the interval <0, I>
- F) Standard deviation of the windowed EOG signal normalized to the interval <0, I > .

The red color curves represent the moving average, the window size is 5 minutes.

Coherence analysis (Neonatal EEG)

The magnitude-squared coherence is a function of the power spectral densities, Pxx(f) and Pyy(f), and the cross power spectral density, Pxy(f), of x and y:

$$C_{xy}(f) = \frac{|P_{xy}(f)|^2}{P_{xx}(f)P_{yy}(f)}$$

Intra- and inter- hemispheric coherence of neonatal EEG signals

2D topographical mapping

Neonatal EEG

- -WK
- Quiet sleep
- Active sleep

3D topographical mapping

Conclusion

What is successfully performed in automatic mode?

- signal filtration
- segmentation
- feature computation
- clustering
- visualization methods (spectrogram, koherence, mapping)

What is not yet successfully performed in automatic mode?

classification to classes

Why is fully automatic classification not successful?

- good quality traning set is not available
- artefacts complicate classification
- medical knowledge and experience representation is complex
- high number of channels and long-term recordings ⇒ high temporal demands