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Introduction

I Nuclear reactors monitoring is crucial

I Neutron flux fluctuates due to induced perturbations

I Neutron flux analysis can help detecting reactor anomalies

I Signal in/ex-core detectors are limited in number

I Neutron flux signals can be in time and frequency domain



The Problem

Figure: Graphical explanation of the backward (unfolding) problem [1].



fuel	assembly	
excessively	vibrating	

Unfolding	

Forward	Problem	

Perturbation	of	the	absorption	in	
the	macroscopic	cross	section	

Figure: Graphical explanation of the backward (unfolding) problem [1].



Analysed Signals

Frequency Domain Related

Simulation conducted using CORESIM tool [2] using a Pressurized
Water Reactor (PWR) with:

I Radial core 15× 15 fuel assemblies

I Volumetric mesh 32× 32× 26

I Dirac’s like perturbations at 0.1Hz , 1Hz and 10Hz

I Green’s function as the reactor transfer function



CORESIM output

I Fast and thermal response to applied perturbation

I A complex signal distributed in a 3D array 32× 32× 26

(a) (b) (c)

Figure: Response to a: Localised, b-c: Propagating-Travelling
perturbations.

Signals were corrupted to emulate fewer available sensor
measurements (5% and 20% of measurements respectively).
Fast and Thermal responses were concatenated into a 64× 64× 26
volume, zero-padded to 64× 64× 32 for convenience.



Time Domain Related
Simulation were conducted using Simulate-3K (S3K) [3] on a
model of the four-loop Westinghouse PWR mixed core. Below, a
radial view of the nuclear reactor core model utilised. The red
central zone represents a 5× 5 cluster of fuel assemblies (FAs).

4 ex-core detectors at 2 levels
8 in-core detectors at 6 levels

5× 5 FAs cluster



Table: Synchronised vibration of a 5× 5 fuel assemblies central cluster.

Scenario Perturbation Frequency Amplitude ID

1
5 × 5 cluster FAs WN 1 mm 1 0 0 0

5 × 5 cluster FAs WN 0.5 mm 1 0 0 0

2
5 × 5 cluster FAs 1 Hz 1 mm 0 1 0 0

5 × 5 cluster FAs 1 Hz 0.5 mm 0 1 0 0

Table: Synchronised perturbation of coolant thermal-hydraulic
parameters.

Scenario Perturbation Frequency Amplitude ID

3 temperature random ±1◦C 0 0 1 0

4 flow random ±1% 0 0 0 1



Table: Combination of synchronised vibration of a 5× 5 fuel assemblies
central cluster and synchronised perturbation of coolant
thermal-hydraulic parameters.

Scenario Combined Perturbations ID

5 Temperature (5) & flow (6) 0 0 1 1

6 5 × 5 FA (2) & temperature (5) 1 0 1 0

7 5 × 5 FA (1) & temperature (5) 1 0 1 0

8 5 × 5 FA (4) & temperature (5) 0 1 1 0

9 5 × 5 FA (3) & temperature (5) 0 1 1 0

10 5 × 5 FA (2) & flow (6) 1 0 0 1

11 5 × 5 FA (1) & flow (6) 1 0 0 1

12 5 × 5 FA (4) & flow (6) 0 1 0 1

13 5 × 5 FA (3) & flow (6) 0 1 0 1



SIMULATE-3K output

Each detector recorded a response to the perturbation:

I recording duration: 100s,

I sampling rate = 100Hz

I with perturbation amplitude = 0.5mm and 1mm

We get x ∈ R10001 signals. Window sampling augment these
vectors to produce x ∈ R1980×100. Furthermore, signals were
corrupted by the addition of White Gaussian Noise at
signal-to-noise ratios (SNR) 10 and 5.
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Figure: a: Signal obtained by means of S3K with noise added at
SNR = 5. b: Signal sampling.



Our Approach

Frequency Domain Related

We address the unfolding problem as:

I classification - perturbation type

I regression - perturbation source location

Time Domain Related
We address the problem as:

I classification - scenario ID



3D-CNN and LSTM

x1

f u tanh

tanh

o

f u tanh

tanh

o

A
[1]

0

A
[2]

0

C
[1]

0

C
[2]

0

x2

f u tanh

tanh

o

f u tanh

tanh

o

x3

f u tanh

tanh

o

f u tanh

tanh

o

x100

f u tanh o

tanh

f u tanh

tanh

o

...

...

...

...

16

... ...

512 512

7

9

i, j, ktype

stride 2

f
=
512

4

2

...
...

4

3 × 3 × 3

CONV

...

32

32

f
←

64

CONV

stride 1

3 × 3 × 3

16

32

32

f
←

f
2

16

32

32

f
←

4f... ...

32

64

64

POOL

stride 2

3 × 3 × 3

CONV

stride 1

1 × 1 × 1

×2

GAP

Figure: Unified framework for time and frequency domain perturbation
type classification and coordinate regression. An LSTM network at the
top for time domain signals, and a 3D CNN below for frequency domain
signals.



Multi-Objective Learning – 3D-CNN

Formally, the multi-task optimisation objective is minimised with
respect to W parameters given D input data as:

L =
T∑
i

λi`i (D;W),where `i represents: (1)

I `1(y1, ŷ1), negative log-likelihood loss for perturbation type
classification

I `2(y2, ŷ2), L2 loss for perturbation coordinate regression

Concretely, the 3D CNN is trained by minimising
L (D;W, λ1, λ2) =

− 1

N

N∑
i=1

[
λ1

P

P∑
j=1

[
y j1 log(ŷ j1) + (1− y j1) log(1− ŷ j1)

]
+

−λ2

C

C∑
c=1

‖y c2 − ŷ c2 ‖
2

]
i

(2)



Multi-Label Classification – LSTM

The problem of recognising which scenario a signal is
representative of was tackled as a multi-label classification task.
512 dimensional LSTM representations were fully connected to
four neurons with sigmoid activation functions. During training the
negative log-likelihood criterion was minimised:

L (y , ŷ) = − 1

PN

P∑
j=1

N∑
i=1

[
yj log(ŷj)+

(1− yj) log(1− ŷj)
]
i

(3)

where P is the number of sigmoid units used for the multi-label
classification task, and N is the number of samples in a batch.



Results

Multi-Objective Learning – 3D-CNN

Table: Results of the frequency domain 3D CNN experiments for
perturbation type classification and localisation regression. (*) marks
combined perturbations scenarios.

3D CNN Perturbation Classification & Localisation

Sensors Train/Valid/ Classification (i, j, k) Regression

(%) Test (%) Accuracy (%) MAE MSE

20 60/15/25 99.75±0.09 0.2528±0.03 0.1347±0.02

20 25/15/60 99.12±0.17 0.4221±0.05 0.4152±0.07

20 15/25/60 98.62±0.22 0.5886±0.05 0.8174±0.12

5 60/15/25 99.32±0.18 0.326±0.05 0.2086±0.04

5 25/15/60 98.34±0.22 0.4818±0.05 0.6044±0.08

5 15/25/60 97.27±0.54 0.689±0.1 1.0749±0.25

20* 60/15/25 99.82±0.05 0.5602±0.04 1.6036±0.15

20* 25/15/60 99.56±0.07 0.8942±0.04 3.5739±0.16

20* 15/25/60 99.44±0.08 0.9635±0.06 4.2814±0.19

5* 60/15/25 99.47±0.03 0.8809±0.04 3.4424±0.16

5* 25/15/60 98.33±0.24 0.5001±0.04 0.6381±0.08

5* 15/25/60 97.15±0.15 1.9528±0.11 11.902±0.66



Multi-Label Classification – LSTM

Table: Results of the time domain data for scenario type classification.

LSTM Network Scenario Classification

Noise Train/Valid/ Timesteps Sensors Classification

(SNR) Test (#sensors) (#) (#) Accuracy (%)

no noise 28/14/14 100 1 97.01

10 28/14/14 100 1 81.16

5 28/14/14 100 1 77.43



Discussion and Conclusions

We proposed:

I A Deep-CNN approach to unfold the induced neutron noise in
the frequency domain

I A Deep-CNN approach to identify core perturbation types

I An LSTM network to recognise of perturbation in the time
domain

I We are moving toward a unified framework capable of
simultaneously accommodating signals in the time and
frequency domain.



Future Work

In the future, we plan to extend our studies to other types of data,
simulated in the Time and Frequency domains utilising the
same/multiple reactor cores, to test the sensitivity of our
framework to different reactor characteristics.
Furthermore we intend to investigate real data coming from
nuclear power plants, in pursuit of a framework suitable for
simultaneously handling Time and Frequency domain signals for
the localisation and classification of nuclear reactor anomalies.
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