USING ACTIVE LEARNING IN HYBRID LEARNING ENVIRONMENTS

Prof. Christophe Demazière
demaz@chalmers.se

TASK FORCE ON DETERMINISTIC REACTOR MODELLING
BACKGROUND

• Declining student enrolment in nuclear engineering programs in Europe

➢ Challenge:
 ▪ for knowledge preservation
 ▪ for maintaining highly specialized courses alive
BACKGROUND

• Efforts initiated at the Physics Department to teach in “hybrid” learning environments:

On-site attendance + Off-site attendance
BACKGROUND

• Special interactive teaching room developed:
BACKGROUND

• Focus on favouring student learning:
 • Flipped classroom pedagogy
 • In-class active learning
BACKGROUND

• Challenging to design active learning sessions in hybrid learning environments

• Examples of two short courses (one week each) given within two European projects (CORTEX and ESFR-SMART)

• Focus on student engagement
METHODS AND RESULTS

• Pedagogical approach used for both courses:
 - Study of the textbook
 - Attendance of the webcasts
 • Individual work
 • Asynchronous interactions with the teachers
 - Training on on-line quizzes
 • Individual work
 • Asynchronous interactions with the teachers
 - Attendance of the synchronous sessions
 • Group attendance
 • Synchronous interactions with the teachers
 • Use of active learning techniques
METHODS AND RESULTS

• Contents of the synchronous sessions:
 CORTEX course
 Short summarizing lectures
 Discussions on quizzes
 Teacher-led exercises
METHODS AND RESULTS

• Contents of the synchronous sessions:

 CORTEX course
 Short summarizing lectures
 Discussions on quizzes
 Teacher-led exercises

 ESFR-SMART course
 Short summarizing lectures
 Teacher-led coding assignments
 using MATLAB Grader
METHODS AND RESULTS

• Attendance:

 CORTEX course
 14 on-site attendees
 10 off-site attendees
 (completing the assignments)

 ESFR-SMART course
 11 on-site attendees
 16 off-site attendees
 (completing the assignments)

• End-of-course evaluation questionnaires:

 CORTEX course
 23 respondents
 (52.2% on-site respondents)

 ESFR-SMART course
 25 respondents
 (40% on-site respondents)
METHODS AND RESULTS

➢ Students’ overall impression of the courses:
 CORTEX course
 ESFR-SMART course

- Not good at all.
- Somewhat not good.
- Good.
- Very good.

87% 13% 80% 20%
METHODS AND RESULTS

- Students’ opinion about the best teaching format for learning the course concepts:

CORTEX course

- Much better in the traditional set-up: 47.8%
- Somewhat better in the traditional set-up: 26.1%
- Equally well in the traditional and flipped set-ups: 8.7%
- Somewhat better in the flipped set-up: 17.4%
- Much better in the flipped set-up: 8%

ESFR-SMART course

- Much better in the traditional set-up: 32%
- Somewhat better in the traditional set-up: 36%
- Equally well in the traditional and flipped set-ups: 8%
- Somewhat better in the flipped set-up: 20%
- Much better in the flipped set-up: 8%
METHODS AND RESULTS

- Students’ opinion about the quality of the pedagogical approach:
 - CORTEX course
 - ESFR-SMART course
METHODS AND RESULTS

- Students’ opinion about the contribution from the on-line quizzes to learning:

 CORTEX course

 - 91.3% Positive contribution
 - 8.7% Negative contribution

 ESFR-SMART course

 - 84% Positive contribution
 - 8% No opinion
 - 8% Negative contribution
METHODS AND RESULTS

➤ Students’ opinion about the level of engagement of the synchronous sessions:

CORTEX course
- 52.2% Not engaging at all
- 47.8% Somewhat engaging
(54% of off-site attendees finding the sessions somewhat engaging)

ESFR-SMART course
- 76% Not engaging at all
- 8% Somewhat engaging
- 16% Very engaging
(33% of off-site attendees finding the sessions somewhat/not at all engaging – help from a Teaching Assistant to handle queries from remote attendees)
METHODS AND RESULTS

Teacher’s impressions:

- Deeply engaged students
- Rewarding for the teacher to support the students when they most need help
- Active learning-based assignments triggered questions not necessarily related to the assignments
- Interactions with the students/teacher occurring at a much higher level of conceptual understanding
DISCUSSION AND CONCLUSIONS

• Hybrid learning environment combined with flipped classroom setup and active learning techniques resulted in deep student engagement

• Flexibility of the format:
 • Some resources available 24/7 for self-paced learning
 • No need to travel on site
DISCUSSION AND CONCLUSIONS

• Careful preparation and planning needed
• Use of many IT resources
 ➢ Dedication from the teaching staff necessary
ACKNOWLEDGEMENTS

Financial support from the European Commission via:

• The CORTEX project

 (Euratom research and training programme 2014-2018 under grant agreement No 754316)

• The ESFR-SMART project

 (Euratom research and training programme 2014-2018 under grant agreement No 754501)