Neutron noise experiments in the AKR-2 and CROCUS reactors for the CORTEX European project

ANIMMA 2019 | 17.06.2019, Portorož (Slovenia)

V. Lamirand¹,², A. Rais¹, S. Hübner³, C. Lange³, J. Pohlus⁴, Uwe Paquee⁴, C. Pohl⁵, O. Pakari¹, P. Frajtag¹, D. Godat¹, M. Hursin¹,², A. Laureau¹, G. Perret², C. Fiorina¹, A. Pautz¹,²

vincent.lamirand@epfl.ch, sebastian.huebner@tu-dresden.de

¹ Laboratory for Reactor Physics and Systems behaviour (LRS), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
² Nuclear Energy and Safety Research Division (NES), Paul Scherrer Institut (PSI), CH-5232 Villigen, Switzerland
³ Institute of Power Engineering, Technische Universität Dresden, 01062 Dresden, Germany
⁴ Institut fur Sicherheitstechnologie GmbH (ISTec), 85748 Garching, Germany
⁵ TÜV Rheinland Industrie Service GmbH (TUV), 51105 Cologne, Germany

This project has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 754316. The content in this presentation reflects only the views of the authors. The European Commission is not responsible for any use that may be made of the information it contains.
Contents

The CORTEX project

First AKR-2 campaign
• The AKR-2 reactor
• Perturbation systems
• Detection instrumentation
• Measurements performed

Conclusions & outlook

First CROCUS campaign
• The CROCUS reactor
• Fuel rods oscillator
• Detection instrumentation
• Measurements performed
The Horizon 2020 CORTEX project1

CORRe monitoring Techniques and EXperimental validation & demonstration

\begin{itemize}
 \item develop a core monitoring technique for the early detection, characterization, and localization of anomalies using neutron noise
\end{itemize}

\textit{In-core and ex-core detectors’ signals} $
ightarrow$ Signal processing

\textit{Anomaly characterisation and localisation} \rightarrow Machine learning trained with validated simulation tools

1 Demazière C., Vinai P., Hursin M., Kollias S., and Herb J., Overview of the CORTEX project, Proc. Int. Conf. Physics of Reactors – Reactor Physics paving the way towards more efficient systems (PHYSOR2018), Cancun, Mexico, April 22-26, 2018 (2018)
The Horizon 2020 CORTEX project

20 partners for 5 work packages

<table>
<thead>
<tr>
<th>WP1</th>
<th>Development of modelling capabilities for reactor noise analysis:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Task 1.1</td>
<td>Modelling of fluid-structure interactions</td>
</tr>
<tr>
<td>• Task 1.2</td>
<td>Modelling of the effect of fuel assembly vibrations</td>
</tr>
<tr>
<td>• Task 1.3</td>
<td>Generic modelling of reactor transfer function</td>
</tr>
<tr>
<td>• Task 1.4</td>
<td>Methodology for uncertainty and sensitivity analysis applied to reactor noise simulations</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WP2</th>
<th>Validation of the modelling tools against experiments in research reactors</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Task 2.1</td>
<td>Generation of high quality experimental data for code validation</td>
</tr>
<tr>
<td>• Task 2.2</td>
<td>Validation of the computational tools</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WP3</th>
<th>Development of advanced signal processing and machine learning methodologies for analysis of plant data</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Task 3.1</td>
<td>Generation of basic scenarios and simulated data</td>
</tr>
<tr>
<td>• Task 3.2</td>
<td>Advanced data processing in the time- and frequency-domains</td>
</tr>
<tr>
<td>• Task 3.3</td>
<td>Data analysis using machine learning techniques and deep neural networks</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WP4</th>
<th>Application and demonstration of the developed modelling tools and signal processing techniques against plant data</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Task 4.1</td>
<td>Preparation of available measurements and core data; performance of additional measurements; packaging and distribution of tools to project partners</td>
</tr>
<tr>
<td>• Task 4.2</td>
<td>Demonstration of the computational tools and methodologies developed in WP1 and WP3</td>
</tr>
<tr>
<td>• Task 4.3</td>
<td>Recommendations on in-core and out-of-core instrumentations</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WP5</th>
<th>Knowledge dissemination and education</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Task 5.1</td>
<td>Education in reactor dynamics, neutron noise and diagnostics</td>
</tr>
<tr>
<td>• Task 5.2</td>
<td>Knowledge dissemination</td>
</tr>
<tr>
<td>• Task 5.3</td>
<td>Communication</td>
</tr>
</tbody>
</table>
Experimental campaigns for CORTEX

20 partners for 5 work packages

- WP1 – Development of modelling capabilities for reactor noise analysis:
 - Task 1.1 – Modelling of fluid-structure interactions
 - Task 1.2 – Modelling of the effect of fuel assembly vibrations
 - Task 1.3 – Generic modelling of reactor transfer function
 - Task 1.4 – Methodology for uncertainty and sensitivity analysis applied to reactor noise simulations

- WP2 – Validation of the modelling tools against experiments in research reactors
 - Task 2.1 – Generation of high quality experimental data for code validation
 - Task 2.2 – Validation of the computational tools

- WP3 – Development of advanced signal processing and machine learning methodologies for analysis of plant data
 - Task 3.1 – Generation of basic scenarios and simulated data
 - Task 3.2 – Advanced data processing in the time- and frequency-domains
 - Task 3.3 – Data analysis using machine learning techniques and deep neural networks

- WP4 – Application and demonstration of the developed modelling tools and signal processing techniques against plant data
 - Task 4.1 – Preparation of available measurements and core data; performance of additional measurements; packaging and distribution of tools to project partners
 - Task 4.2 – Demonstration of the computational tools and methodologies developed in WP1 and WP3
 - Task 4.3 – Recommendations on in-core and out-of-core instrumentations

- WP5 – Knowledge dissemination and education
 - Task 5.1 – Education in reactor dynamics, neutron noise and diagnostics
 - Task 5.2 – Knowledge dissemination
 - Task 5.3 – Communication

First AKR-2 campaign in March 2018
- rotating neutron absorber
- vibrating absorber

First CROCUS campaign in Sep. 2018
- fuel rods oscillator
Data acquisition systems (DAQ)

TUD Pulse-mode DAQ (1 channel): ORTEC Easy-MCS multichannel scaler and MAESTRO software

EPFL Pulse- (4 ch.) and current-mode (4 ch.) DAQ:
- ORTEC PCI-based multichannel scalers and LabVIEW routines
- Lecroy Wavesurfer 10 oscilloscope

ISTec SIGMA industry-grade current-mode system (16 ch.), used with Robotron 20046 frequency to voltage converters for pulse-mode.

First AKR-2 campaign
6-15 March 2018
AKR-2 Characteristics

- Thermal, zero-power reactor
- Homogeneous uranium-oxide, polyethylene core
- U-235 enrichment of 19.8 % (ca. 790 g)
- Graphite reflector
- $\Phi_{\text{max}} = 2.7 \cdot 10^7 \text{ cm}^{-2}.\text{s}^{-1}$
- $P_{\text{therm,max}} = 1.4 \text{ W (2W)}$
AKR-2 Components

- Fuel
- Reflector
- Control- and Safety rods
- Experimental Channels
- Shielding
AKR-2 Kinetic Parameters & ZPTF

MCNP 6.0
ENDF/B-VIII.0

<table>
<thead>
<tr>
<th>Estimate</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Generation time</td>
<td>Λ</td>
</tr>
<tr>
<td>Beta effective</td>
<td>β_{eff}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Precursor</th>
<th>β_{eff}</th>
<th>λ_i (s$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.00027</td>
<td>0.01334</td>
</tr>
<tr>
<td>2</td>
<td>0.00137</td>
<td>0.03273</td>
</tr>
<tr>
<td>3</td>
<td>0.00133</td>
<td>0.12079</td>
</tr>
<tr>
<td>4</td>
<td>0.00296</td>
<td>0.30293</td>
</tr>
<tr>
<td>5</td>
<td>0.00123</td>
<td>0.85011</td>
</tr>
<tr>
<td>6</td>
<td>0.00050</td>
<td>2.85508</td>
</tr>
</tbody>
</table>

Transfer function (1/Hz)

![Graph showing transfer function vs. frequency (f in Hz)]
AKR-2 Locality of Perturbations

Linear moving absorber (pile oscillator)

Rotating absorber
AKR-2 Perturbation systems
Linear moving absorber

• Drive: pneumatic
• Distance: fixed, 20 cm
• Frequency: 0.08 to 0.71 Hz
• Motion profile: fixed, trapeze (jump)
• Total reactivity: $\rho'_t = 0.0126$ $\$
AKR-2 Perturbation systems
Rotating absorber

MCNP simulation of the flux in the tangential channel 3-4
AKR-2 Perturbation systems
Rotating absorber

MCNP simulation of the flux in the tangential channel 3-4

Total reactivity: $\rho'_{t}=0.0109$

Measured reactivity of the rotating absorber
AKR-2 Position of detectors

1 to 3 He-3 proportional counter
AKR-2 Position of detectors

1 to 3: He-3 proportional counter
4: Fission chamber
5 & 6: Fission chamber, wide range
7: γ- compensated ion chamber, power range
AKR-2 Position of detectors

He-3 proportional counter
Fission chamber
Fission chamber, wide range
γ- compensated ion chamber, power range
AKR-2 Measurement Campaign

Linear Moving Absorber (Pile Oscillator)

<table>
<thead>
<tr>
<th>IsTec</th>
<th>EPFL</th>
<th>TUD</th>
<th>Comparable</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>17</td>
<td>16</td>
<td>15 (17)</td>
</tr>
</tbody>
</table>

Reactor Power: 0.8 to 2.0 W; Perturbation frequency: 0.08 to 0.71 Hz

Rotating Absorber

<table>
<thead>
<tr>
<th>IsTec</th>
<th>EPFL</th>
<th>TUD</th>
<th>Comparable</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>10</td>
<td>4</td>
<td>4 (10)</td>
</tr>
</tbody>
</table>

Reactor Power: 0.2 to 2.0 W; Perturbation frequency: 0.2 to 2.0 Hz

Static measurements of ISTec (and TUD) at different power levels
First CROCUS campaign
17-21 September 2018
The CROCUS reactor

• Reactor type
 LWR with partially submerged core
 Room T (controlled) and atmospheric P
 Forced water flow (160 l.min⁻¹)

• Operation
 100 W (zero-power reactor)
 i.e. maximum $2.5 \times 10^9 \text{ cm}^2\cdot\text{s}^{-1}$
 Control: B_4C rods and spillway
The CROCUS reactor

- **Reactor type**
 - LWR with partially submerged core
 - Room T (controlled) and atmospheric P
 - Forced water flow (160 l.min⁻¹)

- **Operation**
 - 100 W (zero-power reactor)
 - i.e. maximum 2.5×10^9 cm².s⁻¹
 - Control: B_4C rods and spillway

Reactivity vs Rod Position

- Precision: ± 0.5 mm $\Leftrightarrow \pm 0.2$ pcm

Reactivity vs Water Level

- Precision: ± 0.1 mm $\Leftrightarrow \pm 0.4$ pcm
The CROCUS reactor

- **Reactor type**
 LWR with partially submerged core
 Room T (controlled) and atmospheric P
 Forced water flow (160 l.min⁻¹)

- **Operation**
 100 W (zero-power reactor)
 i.e. maximum 2.5×10^9 cm².s⁻¹
 Control: B₄C rods and spillway

- **Core dimensions**
 $\varnothing 60$ cm/100 cm

- **Fuel lattices**
 2-zone: 336/176 rods actually
 Inner: UO₂ 1.806 wt% 1.837 cm
 Outer: U₄met 0.947 wt% 2.917 cm
CROCUS Kinetic Parameters & ZPTF

MCNPv5-1.6
JEFF 3.1.1

<table>
<thead>
<tr>
<th>Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generation time</td>
</tr>
<tr>
<td>Beta effective</td>
</tr>
</tbody>
</table>

Estimated APSD from an efficient detector \((10^{-5})\)
Fuel rods oscillator

Design for investigating power fluctuations induced by fuel oscillations

- COLIBRI experimental program in CROCUS
- Up to 18 U_m rods, ±2.5 mm (i.e. 8 pcm), 2 Hz
- Authorization in July 2018 for step-by-step loading and testing procedure, from in-air out of the vessel to critical operation\(^1\)

\(^1\) V. Lamirand et al., “The COLIBRI experimental programme in the CROCUS reactor: development and licensing of a fuel rods oscillator,” RRFM/IGORR 2019, Swemieh (Jordan), 24-28 March 2019
Fuel rods oscillator

Design for investigating power fluctuations induced by fuel oscillations

• COLIBRI experimental program in CROCUS
• Up to 18 Uₘ rods, ±2.5 mm (i.e. 8 pcm), 2 Hz
• Authorization in July 2018 for step-by-step loading and testing procedure, from in-air out of the vessel to critical operation¹

Presentation on Thursday at 14:40 (Europa)

Fuel rods oscillator

Specifications

- No elements in the active zone
- Rigid transmission top to bottom, with Al beam
- Fuel rods lifted for oscillation: 10 mm

Oscillator with core structures, and few pins inserted in the device.
Fuel rods oscillator

Specifications

- No elements in the active zone
- Rigid transmission top to bottom, with Al beam
- Fuel rods lifted for oscillation: 10 mm
- Signal outputs
 - Motor’s position from control
 - Motor’s rotation via inductive captor
 - Position at device bottom via cable sensor

All signals collected by the operation software, + extraction of the inductive captor’s output.
Configuration

Experimental locations and associated detectors

NORTH

Water level: 1000 mm

Control rod operation
Detection instrumentation

Experimental locations and associated detectors

Safety Monitor
Photonis CFUM2I 235U FC
$\varnothing 25.4 \times 120 \text{ mm}$
$10^{-2} n_{th}^{-1}$
Detection instrumentation

Monitor
Merlin Gerin CC54 10B CIC
$\varnothing 50 \times 355$ mm
3×10^{-14} A.n$_{th}^{-1}$

Monitor CFUM21 235U FC (W)

Experimental locations and associated detectors
Detection instrumentation

Monitor CC54 10B CIC (N)

Monitor CFUM21 235U FC (W)

Photonis CFUL01 235U FC
$\varnothing 48 \times 211$ mm
1n_{th}^{-1}

Experimental locations and associated detectors
Detection instrumentation

Monitor CC54 10B CIC (N)

CFUL01 235U FC (W) #654

Monitor CFUM21 235U FC (W)

Transcommerce Int. MN-1 BF$_3$

$\varnothing 7.5 \times 100$ mm

10^{-2} n$_{th}$ m$^{-1}$

Experimental locations and associated detectors
Detection instrumentation

Monitor CC54 10B CIC (N)

CFUL01 235U FC (W) #654

Monitor CFUM21 235U FC (W)

MN-1 BF$_3$ (SW) #G45270

BF$_3$

$\varnothing 7.5 \times 100$ mm

$10^{-2} n_{th}^{-1}$

NORTH

Experimental locations and associated detectors
Detection instrumentation

Monitor 10B CIC (N)
BF$_3$ (NW) #G20056
CFUL01 235U FC (W) #654
Monitor CFUM21 235U FC (W)
BF$_3$(COLIBRI) #G20055
MN-1 BF$_3$ (SW) #G45270

Photonis CFUF34 FC
$\varnothing 4.7 \times 27$ mm
10^{-3} n$_{th}^{-1}$

Experimental locations and associated detectors
Experimental setup

In addition from COLIBRI:
- Inductive captor
- Cable coder via software
- Motor position output only

Monitor CC54 10B CIC (N)
CHC 1

BF$_3$ (NW) #G20056
ch. 1

CFUL01 235U FC (W) #654
ch. 597

Monitor CFUM21 235U FC (W)
CHI 1

BF$_3$(COLIBRI) #G20055
ch. 2

MN-1 BF$_3$ (SW) #G45270
ch. 4

Monitor CC54 10B CIC (S)
CHC 2

MN-1 BF$_3$ (NE) #G47349
ch. 3

Monitor CFUM21 235U FC (E)
CHI 2

CFUF34 235U MFC (CC)
TRAX

CFUL01 235U FC (E) #653, ch. 596

Control rod operation

10 cm

Experimental locations and associated detectors
Acquisition

Experimental locations and associated detectors

In addition from COLIBRI:
- Inductive captor
- Cable coder via software
- Motor position output only

Monitor CC54 $^{10}\text{B} \, \text{CIC (N)}$

$^{35}\text{U} \, \text{FC (W)}$ #654

Monitor CFUM21 $^{35}\text{U} \, \text{FC (E)}$

CFUL01 $^{35}\text{U} \, \text{FC (E)}$ #654

BF$_3$(COLIBRI) #G20055

MN-1 BF$_3$ (NE) #G47349

CHC 1

CHI 1

BF$_3$ (NW) #G20056

ch. 1

ch. 3

ch. 597

ch. 596

ch. 596

TUD
In addition from COLIBRI:
- Inductive captor
- Cable coder via software
- Motor position output only

Experimental locations and associated detectors

Monitor CC54 10B CIC (N)
CHC 1

BF$_3$ (NW) #G20056
ch. 1

CFUL01 235U FC (W) #654
ch. 597

Monitor CFUM21 235U FC (W)
CHI 1

BF$_3$(COLIBRI) #G20055
ch. 2

MN-1 BF$_3$ (SW) #G45270
ch. 4

CFUF34 235U MFC (CC)
TRAX

CFUL01 235U FC (E) #653,
ch. 596

Monitor CC54 10B CIC (S)
CHC 2

MN-1 BF$_3$ (NE) #G47349
ch. 3

TUD EPFL
In addition from COLIBRI:
- Inductive captor
- Cable coder, via software
- Motor position output only

Acquisition

Experimental locations and associated detectors

Monitor CC54 \(^{10}\text{B} \text{CIC (N)}\)
CHC 1

BF\(_3\) (NW) \#G20056
ch. 1

CFUL01 \(^{235}\text{U FC (W)}\) \#654
ch. 597

Monitor CFUM2I \(^{235}\text{U FC (W)}\)
CHI 1

BF\(_3\) (COLIBRI) \#G20055
ch. 2

MN-I BF\(_3\) (SW) \#G45270
ch. 4

Monitor CFUM2I \(^{235}\text{U FC (E)}\)
CHI 2

CFUF34 \(^{235}\text{U MFC (CC)}\)
TRAX

CFUL01 \(^{235}\text{U FC (E)}\) \#653,
ch. 596

Monitor CC54 \(^{10}\text{B CIC (S)}\)
CHC 2

TUD EPFL ISTec
Measurements

Static measurements
Reactor: 100 mW stable power, 20°C, 1000 mm water level, control rod operation

COLIBRI measurements
Reactor: same, but variable control rod insertion
Setup: 18 rods oscillation, 30 min to 2 h measurements

<table>
<thead>
<tr>
<th>Amplitude (mm)</th>
<th>0.1</th>
<th>0.5</th>
<th>1</th>
<th>1.5</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>±0.5</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>±1.0</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>±1.5</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>±2.0</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Measurements

18 rods at ±1.5 mm and 1 Hz
Measurements

Preliminary results for COLIBRI with 18 rods at ±2 mm and 1 Hz modelled with CORE SIM (courtesy DREAM, Chalmers University)
Conclusions and outlook

CORTEX: an H2020 collaborative project for innovative core monitoring techniques

• The two first campaigns in AKR-2 and CROCUS were carried out successfully
• Data processed and distributed along a technical report to the Consortium
• Qualification study of TUD and EPFL acquisition systems with respect to ISTec
• On-going analysis of the experimental data, with uncertainty quantification
• Iteration with the modellers for the design and preparation of the next campaigns:
 • October 2019 for COLIBRI in CROCUS
 • Spring 2020 for AKR-2
• Upgrades of the perturbation devices and instrumentations
• Development of miniature fiber-coupled scintillators for core-mapping
Conclusions and outlook

CORTEX: an H2020 collaborative project for innovative core monitoring techniques

• The two first campaigns in AKR-2 and CROCU5 were carried out successfully
• Data processed and distributed along a technical report to the Consortium
• Qualification study of TUD and EPFL acquisition systems with respect to ISTec
• On-going analysis of the experimental data, with uncertainty quantification
• Iteration with the modellers for the design and preparation of the next campaigns:
 • October 2019 for COLIBRI in CROCU5
 • Spring 2020 for AKR-2
• Upgrades of the perturbation devices and instrumentations
• Development of miniature fiber-coupled scintillators for core-mapping

Presentation on Thursday by F. Vitullo at 15:20 (#04-1456, Europa)
Measurements

18 rods at ±1.5 mm and 1 Hz
Thank you!