A FREQUENCY-DOMAIN REACTOR NEUTRON NOISE SIMULATOR BASED ON A DISCRETE ORDINATES METHOD

Huaiqian Yi¹, Paolo Vinaí and Christophe Demazière¹
¹Division of Subatomic and Plasma Physics, Department of Physics, Chalmers University of Technology
412 96 Gothenburg, Sweden

1. Background
- Neutron noise are referred to as the fluctuations of neutron flux measurements around an expected mean value because of variations of nuclear reactor properties
- The analysis of neutron noise is helpful to core monitoring and diagnostics
- Modelling of the reactor transfer function is needed for the analysis
- Most of the past modeling work is based on a low order approximation of the neutron transport equation (e.g. diffusion theory)

2. Aim of the project
- Development of a solver for more accurate neutron noise calculations, based on a higher-order transport method

3. The Simulator
- Calculation scheme based on a two-step procedure
 - Dynamic simulation in the frequency domain
 - Spatial discretization based on a diamond finite difference scheme
 - Discrete ordinates method is used for the treatment of the angular dependence of the neutron fluxes
 - Two-energy-group formulation
 - Acceleration of the convergence rate for both modules using the diffusion synthetic acceleration (DSA) technique

4. Simulation of a localized neutron noise source
- 2-D heterogeneous configuration
- Perturbation of the capture cross section in one point of the system
- Simulated neutron noise with respect to frequency is consistent with the theoretical zero-power reactor transfer function

3. Convergence analysis
- The convergence rate is studied via a theoretical Fourier analysis and compared with numerical results
- DSA leads to smaller spectral radius and consequently faster convergence

Figure 1: Spectral radius as a function of frequency (left) and number of inner iterations (right).

Figure 2: Amplitude and phase of the fast (left) and thermal (right) neutron noise at frequency of 1 Hz

Figure 3: Neutron noise amplitude (left) and phase (right) as a function of perturbation frequency, taken at the position of the noise source.