Towards a Deep Unified Framework for Nuclear Reactor Perturbation Analysis

Fabio De Sousa Ribeiro, Francesco Calivá

University of Lincoln

fdesousaribeiro@lincoln.ac.uk
caliva.francesco@gmail.com

18/11/2018
Overview

Introduction
 Forward and Backward Problem
 Analysed Signals

Methods
 Our Approach
 Multi-Objective Learning
 Multi-Label Classification
 Results

Discussion and Conclusions

Future Work
Introduction

- Nuclear reactors monitoring is crucial
- Neutron flux fluctuates due to induced perturbations
- Neutron flux analysis can help detecting reactor anomalies
- Signal in/ex-core detectors are limited in number
- Neutron flux signals can be in time and frequency domain
The Problem

Figure: Graphical explanation of the backward (unfolding) problem [1].
Figure: Graphical explanation of the backward (unfolding) problem [1].
Analysed Signals

Frequency Domain Related
Simulation conducted using CORESIM tool [2] using a Pressurized Water Reactor (PWR) with:

- Radial core 15×15 fuel assemblies
- Volumetric mesh $32 \times 32 \times 26$
- Dirac’s like perturbations at $0.1Hz$, $1Hz$ and $10Hz$
- Green’s function as the reactor transfer function
CORESIM output

- Fast and thermal response to applied perturbation
- A complex signal distributed in a 3D array $32 \times 32 \times 26$

Figure: Response to

- **a:** Localised, **b-c:** Propagating-Travelling perturbations.

Signals were corrupted to emulate fewer available sensor measurements (5% and 20% of measurements respectively). Fast and Thermal responses were concatenated into a $64 \times 64 \times 26$ volume, zero-padded to $64 \times 64 \times 32$ for convenience.
Time Domain Related
Simulation were conducted using Simulate-3K (S3K) [3] on a model of the four-loop Westinghouse PWR mixed core. Below, a radial view of the nuclear reactor core model utilised. The red central zone represents a 5×5 cluster of fuel assemblies (FAs).

4 ex-core detectors at 2 levels
8 in-core detectors at 6 levels
5×5 FAs cluster
Table: Synchronised vibration of a 5×5 fuel assemblies central cluster.

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Perturbation</th>
<th>Frequency</th>
<th>Amplitude</th>
<th>ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5×5 cluster FAs</td>
<td>WN</td>
<td>1 mm</td>
<td>0000</td>
</tr>
<tr>
<td></td>
<td>5×5 cluster FAs</td>
<td>WN</td>
<td>0.5 mm</td>
<td>0000</td>
</tr>
<tr>
<td>2</td>
<td>5×5 cluster FAs</td>
<td>1 Hz</td>
<td>1 mm</td>
<td>1000</td>
</tr>
<tr>
<td></td>
<td>5×5 cluster FAs</td>
<td>1 Hz</td>
<td>0.5 mm</td>
<td>1000</td>
</tr>
</tbody>
</table>

Table: Synchronised perturbation of coolant thermal-hydraulic parameters.

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Perturbation</th>
<th>Frequency</th>
<th>Amplitude</th>
<th>ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>temperature</td>
<td>random</td>
<td>$\pm 1^\circ C$</td>
<td>0010</td>
</tr>
<tr>
<td>4</td>
<td>flow</td>
<td>random</td>
<td>$\pm 1%$</td>
<td>0001</td>
</tr>
</tbody>
</table>
Table: Combination of synchronised vibration of a 5×5 fuel assemblies central cluster and synchronised perturbation of coolant thermal-hydraulic parameters.

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Combined Perturbations</th>
<th>ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Temperature (5) & flow (6)</td>
<td>0 0 1 1</td>
</tr>
<tr>
<td>6</td>
<td>5×5 FA (2) & temperature (5)</td>
<td>1 0 1 0</td>
</tr>
<tr>
<td>7</td>
<td>5×5 FA (1) & temperature (5)</td>
<td>1 0 1 0</td>
</tr>
<tr>
<td>8</td>
<td>5×5 FA (4) & temperature (5)</td>
<td>0 1 1 0</td>
</tr>
<tr>
<td>9</td>
<td>5×5 FA (3) & temperature (5)</td>
<td>0 1 1 0</td>
</tr>
<tr>
<td>10</td>
<td>5×5 FA (2) & flow (6)</td>
<td>1 0 0 1</td>
</tr>
<tr>
<td>11</td>
<td>5×5 FA (1) & flow (6)</td>
<td>1 0 0 1</td>
</tr>
<tr>
<td>12</td>
<td>5×5 FA (4) & flow (6)</td>
<td>0 1 0 1</td>
</tr>
<tr>
<td>13</td>
<td>5×5 FA (3) & flow (6)</td>
<td>0 1 0 1</td>
</tr>
</tbody>
</table>
SIMULATE-3K output

Each detector recorded a response to the perturbation:

- recording duration: 100s,
- sampling rate = 100Hz
- with perturbation amplitude = 0.5mm and 1mm

We get $x \in \mathbb{R}^{10001}$ signals. Window sampling augment these vectors to produce $x \in \mathbb{R}^{1980 \times 100}$. Furthermore, signals were corrupted by the addition of White Gaussian Noise at signal-to-noise ratios (SNR) 10 and 5.

(a)

(b)

Figure: a: Signal obtained by means of S3K with noise added at $SNR = 5$. b: Signal sampling.
Our Approach

Frequency Domain Related
We address the unfolding problem as:
- classification - perturbation type
- regression - perturbation source location

Time Domain Related
We address the problem as:
- classification - scenario ID
Figure: Unified framework for time and frequency domain perturbation type classification and coordinate regression. An LSTM network at the top for time domain signals, and a 3D CNN below for frequency domain signals.
Formally, the multi-task optimisation objective is minimised with respect to W parameters given D input data as:

$$
\mathcal{L} = \sum_{i}^{T} \lambda_i \ell_i(D; W), \text{ where } \ell_i \text{ represents:}
$$

- $\ell_1(y_1, \hat{y}_1)$, negative log-likelihood loss for perturbation type classification
- $\ell_2(y_2, \hat{y}_2)$, $L2$ loss for perturbation coordinate regression

Concretely, the 3D CNN is trained by minimising

$$
\mathcal{L}(D; W, \lambda_1, \lambda_2) =
$$

$$
- \frac{1}{N} \sum_{i=1}^{N} \left[\frac{\lambda_1}{P} \sum_{j=1}^{P} \left[y_1^j \log(\hat{y}_1^j) + (1 - y_1^j) \log(1 - \hat{y}_1^j) \right] + \right.
\left. - \frac{\lambda_2}{C} \sum_{c=1}^{C} \|y_2^c - \hat{y}_2^c\|^2 \right]_i
$$

(2)
The problem of recognising which scenario a signal is representative of was tackled as a multi-label classification task. 512 dimensional LSTM representations were fully connected to four neurons with sigmoid activation functions. During training the negative log-likelihood criterion was minimised:

$$
\mathcal{L}(y, \hat{y}) = -\frac{1}{PN} \sum_{j=1}^{P} \sum_{i=1}^{N} \left[y_j \log(\hat{y}_j) + (1 - y_j) \log(1 - \hat{y}_j) \right]_i
$$

where P is the number of sigmoid units used for the multi-label classification task, and N is the number of samples in a batch.
Results

Multi-Objective Learning – 3D-CNN

Table: Results of the frequency domain 3D CNN experiments for perturbation type classification and localisation regression. (*) marks combined perturbations scenarios.

<table>
<thead>
<tr>
<th>Sensors (%)</th>
<th>Train/Valid/Test (%)</th>
<th>Classification Accuracy (%)</th>
<th>((i, j, k)) Regression MAE</th>
<th>MSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>60/15/25</td>
<td>99.75±0.09</td>
<td>0.2528±0.03</td>
<td>0.1347±0.02</td>
</tr>
<tr>
<td>20</td>
<td>25/15/60</td>
<td>99.12±0.17</td>
<td>0.4221±0.05</td>
<td>0.4152±0.07</td>
</tr>
<tr>
<td>20</td>
<td>15/25/60</td>
<td>98.62±0.22</td>
<td>0.5886±0.05</td>
<td>0.8174±0.12</td>
</tr>
<tr>
<td>5</td>
<td>60/15/25</td>
<td>99.32±0.18</td>
<td>0.326±0.05</td>
<td>0.2086±0.04</td>
</tr>
<tr>
<td>5</td>
<td>25/15/60</td>
<td>98.34±0.22</td>
<td>0.4818±0.05</td>
<td>0.6044±0.08</td>
</tr>
<tr>
<td>5</td>
<td>15/25/60</td>
<td>97.27±0.54</td>
<td>0.689±0.1</td>
<td>1.0749±0.25</td>
</tr>
<tr>
<td>20*</td>
<td>60/15/25</td>
<td>99.82±0.05</td>
<td>0.5602±0.04</td>
<td>1.6036±0.15</td>
</tr>
<tr>
<td>20*</td>
<td>25/15/60</td>
<td>99.56±0.07</td>
<td>0.8942±0.04</td>
<td>3.5739±0.16</td>
</tr>
<tr>
<td>20*</td>
<td>15/25/60</td>
<td>99.44±0.08</td>
<td>0.9635±0.06</td>
<td>4.2814±0.19</td>
</tr>
<tr>
<td>5*</td>
<td>60/15/25</td>
<td>99.47±0.03</td>
<td>0.8809±0.04</td>
<td>3.4424±0.16</td>
</tr>
<tr>
<td>5*</td>
<td>25/15/60</td>
<td>98.33±0.24</td>
<td>0.5001±0.04</td>
<td>0.6381±0.08</td>
</tr>
<tr>
<td>5*</td>
<td>15/25/60</td>
<td>97.15±0.15</td>
<td>1.9528±0.11</td>
<td>11.902±0.66</td>
</tr>
</tbody>
</table>
Multi-Label Classification – LSTM

Table: Results of the time domain data for scenario type classification.

<table>
<thead>
<tr>
<th>Noise (SNR)</th>
<th>Train/Valid/Test (#sensors)</th>
<th>Timesteps (#)</th>
<th>Sensors (#)</th>
<th>Classification Accuracy (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>no noise</td>
<td>28/14/14</td>
<td>100</td>
<td>1</td>
<td>97.01</td>
</tr>
<tr>
<td>10</td>
<td>28/14/14</td>
<td>100</td>
<td>1</td>
<td>81.16</td>
</tr>
<tr>
<td>5</td>
<td>28/14/14</td>
<td>100</td>
<td>1</td>
<td>77.43</td>
</tr>
</tbody>
</table>
Discussion and Conclusions

We proposed:

- A Deep-CNN approach to unfold the induced neutron noise in the frequency domain
- A Deep-CNN approach to identify core perturbation types
- An LSTM network to recognise of perturbation in the time domain
- We are moving toward a unified framework capable of simultaneously accommodating signals in the time and frequency domain.
In the future, we plan to extend our studies to other types of data, simulated in the Time and Frequency domains utilising the same/multiple reactor cores, to test the sensitivity of our framework to different reactor characteristics. Furthermore we intend to investigate real data coming from nuclear power plants, in pursuit of a framework suitable for simultaneously handling Time and Frequency domain signals for the localisation and classification of nuclear reactor anomalies.
The research conducted was made possible through funding from the Euratom research and training programme 2014-2018 under grant agreement No 754316 for the ‘CORe Monitoring Techniques And EXperimental Validation And Demonstration (CORTEX)’ Horizon 2020 project, 2017-2021.

Other CORTEX project collaborators:

- Chalmers University of Technology (Sweden): Antonios Mylonakis, Paolo Vinai and Christophe Demazière
- Paul Scherrer Institute (Switzerland): Dionysios Chionis and Abdelhamid Dokhane
- University of Lincoln (United Kingdom): Georgios Leontidis, Stefanos Kollias
Francesco Calivá, Fabio De Sousa Ribeiro, Antonios Mylonakis, Christophe Demaziere, Paolo Vinai, Georgios Leontidis, Stefanos Kollias, et al.
A deep learning approach to anomaly detection in nuclear reactors.
In *Proceedings of 2018 International Joint Conference on Neural Networks (IJCNN)*, 2018.

Christophe Demazière.
Core sim: a multi-purpose neutronic tool for research and education.

Gerardo Grandi, Jeffrey A. Borkowsky, and Kord S. Smith.
Simulate-3k models and methodology.
SSP-98013, Revision, 6, 2006.
Thank you